IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v99y2016icp730-737.html
   My bibliography  Save this article

Energetic performance of a top-lit updraft (TLUD) cookstove

Author

Listed:
  • Obi, Okey Francis
  • Ezeoha, Sunday Louis
  • Okorie, Ifeanyichukwu Christian

Abstract

The performance of a top-lit updraft (TLUD) cookstove using three different fuel types – wood chips, coconut shell and rice husk briquettes was investigated. Two standard biomass cookstove testing protocols were used: water boiling test (WBT) which quantified the thermal efficiency, firepower, specific fuel consumption, time to boil, burning rate and turn down ratio of the cookstove, and controlled cooking test (CCT) which measured the specific energy consumption associated with a local cooking task. It was observed that the performance of the cookstove was significantly influenced (p < 0.05) by the type of fuel used. On the basis of the low power phase of the WBT, wood chips generally offered better stove performance followed by rice husk briquette and coconut shell. In the CCT, 1.02 kg of yam was boiled and the lowest specific fuel consumption of 686.26 ± 0.25 g/kg (8.54 ± 0.00 kJ/kg) was recorded for rice husk briquette while the lowest total cooking time of 10 ± 0.5 min was recorded for wood chip. In comparison to an existing cookstove, the TLUD cookstove performed better in all the performance parameters investigated in the low power. The TLUD cookstove was ranked with respect to fuel use and safety based on ISO/IWA biomass cookstove performance ranking tier.

Suggested Citation

  • Obi, Okey Francis & Ezeoha, Sunday Louis & Okorie, Ifeanyichukwu Christian, 2016. "Energetic performance of a top-lit updraft (TLUD) cookstove," Renewable Energy, Elsevier, vol. 99(C), pages 730-737.
  • Handle: RePEc:eee:renene:v:99:y:2016:i:c:p:730-737
    DOI: 10.1016/j.renene.2016.07.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116306759
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.07.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sutar, Kailasnath B. & Kohli, Sangeeta & Ravi, M.R. & Ray, Anjan, 2015. "Biomass cookstoves: A review of technical aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1128-1166.
    2. Kirk R. Smith, 2003. "Indoor Air Pollution," World Bank Publications - Reports 9723, The World Bank Group.
    3. Ayoub, Josef & Brunet, Eric, 1996. "Performance of large portable metal woodstoves for community kitchens," Renewable Energy, Elsevier, vol. 7(1), pages 71-80.
    4. Berrueta, Víctor M. & Edwards, Rufus D. & Masera, Omar R., 2008. "Energy performance of wood-burning cookstoves in Michoacan, Mexico," Renewable Energy, Elsevier, vol. 33(5), pages 859-870.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kshirsagar, Milind P. & Kalamkar, Vilas R., 2020. "Application of multi-response robust parameter design for performance optimization of a hybrid draft biomass cook stove," Renewable Energy, Elsevier, vol. 153(C), pages 1127-1139.
    2. Okey Francis Obi & Temitope Olumide Olugbade & Joseph Ifeolu Orisaleye & Ralf Pecenka, 2023. "Solid Biofuel Production from Biomass: Technologies, Challenges, and Opportunities for Its Commercial Production in Nigeria," Energies, MDPI, vol. 16(24), pages 1-22, December.
    3. Brian Gumino & Nicholas A. Pohlman & Jonathan Barnes & Paul Wever, 2020. "Design Features and Performance Evaluation of Natural-Draft, Continuous Operation Gasifier Cookstove," Clean Technol., MDPI, vol. 2(3), pages 1-18, July.
    4. Ghiwe, Suraj S. & Kalamkar, Vilas R. & Sharma, Sanjay K. & Sawarkar, Pravin D., 2023. "Numerical and experimental study on the performance of a hybrid draft biomass cookstove," Renewable Energy, Elsevier, vol. 205(C), pages 53-65.
    5. Deng, Lei & Torres-Rojas, Dorisel & Burford, Michael & Whitlow, Thomas H. & Lehmann, Johannes & Fisher, Elizabeth M., 2018. "Fuel sensitivity of biomass cookstove performance," Applied Energy, Elsevier, vol. 215(C), pages 13-20.
    6. Quintero-Coronel, D.A. & Lenis-Rodas, Y.A. & Corredor, L.A. & Perreault, P. & Gonzalez-Quiroga, A., 2021. "Thermochemical conversion of coal and biomass blends in a top-lit updraft fixed bed reactor: Experimental assessment of the ignition front propagation velocity," Energy, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwofie, E.M. & Ngadi, M. & Sotocinal, S., 2017. "Energy efficiency and emission assessment of a continuous rice husk stove for rice parboiling," Energy, Elsevier, vol. 122(C), pages 340-349.
    2. Thacker, Kendall S. & Barger, K. McCall & Mattson, Christopher A., 2017. "Balancing technical and user objectives in the redesign of a peruvian cookstove," Development Engineering, Elsevier, vol. 2(C), pages 12-19.
    3. Manoj Kumar, & Sachin Kumar, & Tyagi, S.K., 2013. "Design, development and technological advancement in the biomass cookstoves: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 265-285.
    4. Deng, Lei & Torres-Rojas, Dorisel & Burford, Michael & Whitlow, Thomas H. & Lehmann, Johannes & Fisher, Elizabeth M., 2018. "Fuel sensitivity of biomass cookstove performance," Applied Energy, Elsevier, vol. 215(C), pages 13-20.
    5. Berrueta, Víctor M. & Edwards, Rufus D. & Masera, Omar R., 2008. "Energy performance of wood-burning cookstoves in Michoacan, Mexico," Renewable Energy, Elsevier, vol. 33(5), pages 859-870.
    6. Jan, Inayatullah, 2012. "What makes people adopt improved cookstoves? Empirical evidence from rural northwest Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3200-3205.
    7. Gianluigi De Gennaro & Paolo Rosario Dambruoso & Alessia Di Gilio & Valerio Di Palma & Annalisa Marzocca & Maria Tutino, 2015. "Discontinuous and Continuous Indoor Air Quality Monitoring in Homes with Fireplaces or Wood Stoves as Heating System," IJERPH, MDPI, vol. 13(1), pages 1-9, December.
    8. Stephanie L. Martin & Jennifer K. Arney & Lisa M. Mueller & Edward Kumakech & Fiona Walugembe & Emmanuel Mugisha, 2013. "Using Formative Research to Design a Behavior Change Strategy to Increase the Use of Improved Cookstoves in Peri-Urban Kampala, Uganda," IJERPH, MDPI, vol. 10(12), pages 1-19, December.
    9. Simons, Andrew M. & Beltramo, Theresa & Blalock, Garrick & Levine, David I., 2017. "Using unobtrusive sensors to measure and minimize Hawthorne effects: Evidence from cookstoves," Journal of Environmental Economics and Management, Elsevier, vol. 86(C), pages 68-80.
    10. James D. Johnston & Megan E. Hawks & Haley B. Johnston & Laurel A. Johnson & John D. Beard, 2020. "Comparison of Liquefied Petroleum Gas Cookstoves and Wood Cooking Fires on PM 2.5 Trends in Brick Workers’ Homes in Nepal," IJERPH, MDPI, vol. 17(16), pages 1-16, August.
    11. Chia-Ching Lin & Chien-Chih Chiu & Po-Yen Lee & Kuo-Jen Chen & Chen-Xi He & Sheng-Kai Hsu & Kai-Chun Cheng, 2022. "The Adverse Effects of Air Pollution on the Eye: A Review," IJERPH, MDPI, vol. 19(3), pages 1-14, January.
    12. Elías Hurtado Pérez & Oscar Mulumba Ilunga & David Alfonso Solar & María Cristina Moros Gómez & Paula Bastida-Molina, 2020. "Sustainable Cooking Based on a 3 kW Air-Forced Multifuel Gasification Stove Using Alternative Fuels Obtained from Agricultural Wastes," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
    13. Samar Khairy Ghanem, 2018. "The relationship between population and the environment and its impact on sustainable development in Egypt using a multi-equation model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 305-342, February.
    14. Kyran O'Sullivan & Douglas F. Barnes, 2007. "Energy Policies and Multitopic Household Surveys : Guidelines for Questionnaire Design in Living Standards Measurement Studies," World Bank Publications - Books, The World Bank Group, number 6615, December.
    15. Mehetre, Sonam A. & Panwar, N.L. & Sharma, Deepak & Kumar, Himanshu, 2017. "Improved biomass cookstoves for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 672-687.
    16. Takama, Takeshi & Tsephel, Stanzin & Johnson, Francis X., 2012. "Evaluating the relative strength of product-specific factors in fuel switching and stove choice decisions in Ethiopia. A discrete choice model of household preferences for clean cooking alternatives," Energy Economics, Elsevier, vol. 34(6), pages 1763-1773.
    17. Raman, P. & Ram, N.K. & Murali, J., 2014. "Improved test method for evaluation of bio-mass cook-stoves," Energy, Elsevier, vol. 71(C), pages 479-495.
    18. Victor M. Berrueta & Montserrat Serrano-Medrano & Carlos García-Bustamante & Marta Astier & Omar R. Masera, 2017. "Promoting sustainable local development of rural communities and mitigating climate change: the case of Mexico’s Patsari improved cookstove project," Climatic Change, Springer, vol. 140(1), pages 63-77, January.
    19. Anna Ruth Pickett & Michelle L. Bell, 2011. "Assessment of Indoor Air Pollution in Homes with Infants," IJERPH, MDPI, vol. 8(12), pages 1-19, December.
    20. Mario Morales-Máximo & José Guadalupe Rutiaga-Quiñones & Omar Masera & Víctor Manuel Ruiz-García, 2022. "Briquettes from Pinus spp. Residues: Energy Savings and Emissions Mitigation in the Rural Sector," Energies, MDPI, vol. 15(9), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:99:y:2016:i:c:p:730-737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.