IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v83y2015icp1279-1286.html
   My bibliography  Save this article

Thermal performance evaluation of solar water heating systems in Australia, Taiwan and Japan – A comparative review

Author

Listed:
  • Halawa, E.
  • Chang, K.C.
  • Yoshinaga, M.

Abstract

The need for domestic hot water in regions with cool climate represents a significant proportion of domestic energy consumption. The steady increase in the electricity costs and environmental concern from use of fossil-based fuel raises the interest in the search for alternative energy sources. In the case of domestic hot water provision, many governments have initiated a gradual switch to more environmentally friendly systems powered by renewable energy such as solar. Solar water heating (SWH) is a mature technology and is gaining popularity in many countries with increasing number of affluent population in society. The increasing adoption of these systems and technologies is a welcome development; however the robust methods of assessment of their thermal performances are required. This paper presents a comparative study of the methods of evaluation of SWH systems' thermal performance in three countries with increasing hot water systems penetration: Australia, Taiwan and Japan. The aim of this comparative study is to discuss merits and weaknesses of each approach and to explore possible common approach that will improve the existing methodologies.

Suggested Citation

  • Halawa, E. & Chang, K.C. & Yoshinaga, M., 2015. "Thermal performance evaluation of solar water heating systems in Australia, Taiwan and Japan – A comparative review," Renewable Energy, Elsevier, vol. 83(C), pages 1279-1286.
  • Handle: RePEc:eee:renene:v:83:y:2015:i:c:p:1279-1286
    DOI: 10.1016/j.renene.2015.04.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115003031
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.04.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Keh-Chin & Lin, Wei-Min & Chung, Kung-Ming, 2013. "Solar thermal market in Taiwan," Energy Policy, Elsevier, vol. 55(C), pages 477-482.
    2. Tsilingiridis, G. & Martinopoulos, G., 2010. "Thirty years of domestic solar hot water systems use in Greece – energy and environmental benefits – future perspectives," Renewable Energy, Elsevier, vol. 35(2), pages 490-497.
    3. Geller, Howard & Harrington, Philip & Rosenfeld, Arthur H. & Tanishima, Satoshi & Unander, Fridtjof, 2006. "Polices for increasing energy efficiency: Thirty years of experience in OECD countries," Energy Policy, Elsevier, vol. 34(5), pages 556-573, March.
    4. Tsilingiridis, G. & Martinopoulos, G. & Kyriakis, N., 2004. "Life cycle environmental impact of a thermosyphonic domestic solar hot water system in comparison with electrical and gas water heating," Renewable Energy, Elsevier, vol. 29(8), pages 1277-1288.
    5. Chang, K. & Lee, T. & Chung, K., 2006. "Solar water heaters in Taiwan," Renewable Energy, Elsevier, vol. 31(9), pages 1299-1308.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Allouhi, A. & Agrouaz, Y. & Benzakour Amine, Mohammed & Rehman, S. & Buker, M.S. & Kousksou, T. & Jamil, A. & Benbassou, A., 2017. "Design optimization of a multi-temperature solar thermal heating system for an industrial process," Applied Energy, Elsevier, vol. 206(C), pages 382-392.
    2. Naspolini, Helena F. & Rüther, Ricardo, 2019. "Impacts of the active power demand measurement-time resolution on the financial attractiveness of domestic solar hot water systems," Renewable Energy, Elsevier, vol. 139(C), pages 336-345.
    3. Khurana, Hitesh & Majumdar, Rudrodip & Saha, Sandip K., 2022. "Response Surface Methodology-based prediction model for working fluid temperature during stand-alone operation of vertical cylindrical thermal energy storage tank," Renewable Energy, Elsevier, vol. 188(C), pages 619-636.
    4. Maraj, Altin & Londo, Andonaq & Gebremedhin, Alemayehu & Firat, Coskun, 2019. "Energy performance analysis of a forced circulation solar water heating system equipped with a heat pipe evacuated tube collector under the Mediterranean climate conditions," Renewable Energy, Elsevier, vol. 140(C), pages 874-883.
    5. Meireles, I. & Sousa, V. & Bleys, B. & Poncelet, B., 2022. "Domestic hot water consumption pattern: Relation with total water consumption and air temperature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. Hu, Mingke & Pei, Gang & Wang, Qiliang & Li, Jing & Wang, Yunyun & Ji, Jie, 2016. "Field test and preliminary analysis of a combined diurnal solar heating and nocturnal radiative cooling system," Applied Energy, Elsevier, vol. 179(C), pages 899-908.
    7. Giglio, T. & Santos, V. & Lamberts, R., 2019. "Analyzing the impact of small solar water heating systems on peak demand and on emissions in the Brazilian context," Renewable Energy, Elsevier, vol. 133(C), pages 1404-1413.
    8. Kim, Jimin & Hong, Taehoon & Jeong, Jaemin & Lee, Myeonghwi & Koo, Choongwan & Lee, Minhyun & Ji, Changyoon & Jeong, Jaewook, 2016. "An integrated multi-objective optimization model for determining the optimal solution in the solar thermal energy system," Energy, Elsevier, vol. 102(C), pages 416-426.
    9. Cao, Yan & Hashemian, Mehran & Ayed, Hamdi & Shawabkeh, Ali & Issakhov, Alibek & Wae-hayee, Makatar, 2022. "Design-eligibility study of solar thermal helically coiled heat exchanging system with annular dimples by irreversibility concept," Renewable Energy, Elsevier, vol. 183(C), pages 369-384.
    10. Vieira, Abel S. & Stewart, Rodney A. & Lamberts, Roberto & Beal, Cara D., 2018. "Residential solar water heaters in Brisbane, Australia: Key performance parameters and indicators," Renewable Energy, Elsevier, vol. 116(PA), pages 120-132.
    11. Diego-Ayala, U. & Carrillo, J.G., 2016. "Evaluation of temperature and efficiency in relation to mass flow on a solar flat plate collector in Mexico," Renewable Energy, Elsevier, vol. 96(PA), pages 756-764.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carnevale, E. & Lombardi, L. & Zanchi, L., 2014. "Life Cycle Assessment of solar energy systems: Comparison of photovoltaic and water thermal heater at domestic scale," Energy, Elsevier, vol. 77(C), pages 434-446.
    2. Arif Yurtsev & Glenn P Jenkins, 2016. "An economic analysis of policies for promoting economically efficient water heater systems operating under seasonal climatic conditions," Energy & Environment, , vol. 27(2), pages 227-240, March.
    3. Greening, Benjamin & Azapagic, Adisa, 2014. "Domestic solar thermal water heating: A sustainable option for the UK?," Renewable Energy, Elsevier, vol. 63(C), pages 23-36.
    4. Martinopoulos, G. & Tsalikis, G., 2018. "Diffusion and adoption of solar energy conversion systems – The case of Greece," Energy, Elsevier, vol. 144(C), pages 800-807.
    5. Besagni, Giorgio & Premoli Vilà, Lidia & Borgarello, Marco & Trabucchi, Andrea & Merlo, Marco & Rodeschini, Jacopo & Finazzi, Francesco, 2021. "Electrification pathways of the Italian residential sector under socio-demographic constrains: Looking towards 2040," Energy, Elsevier, vol. 217(C).
    6. Hong, Junjie & Shi, Fangyuan & Zheng, Yuhan, 2023. "Does network infrastructure construction reduce energy intensity? Based on the “Broadband China” strategy," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    7. Jun Li & Michel Colombier, 2011. "Economic instruments for mitigating carbon emissions: scaling up carbon finance in China’s buildings sector," Climatic Change, Springer, vol. 107(3), pages 567-591, August.
    8. Mabroor Hassan & Manzoor K Afridi & Muhammad I Khan, 2018. "An overview of alternative and renewable energy governance, barriers, and opportunities in Pakistan," Energy & Environment, , vol. 29(2), pages 184-203, March.
    9. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    10. Du, Minzhe & Wang, Bing & Zhang, Ning, 2018. "National research funding and energy efficiency: Evidence from the National Science Foundation of China," Energy Policy, Elsevier, vol. 120(C), pages 335-346.
    11. Yi-Mei Liu & Kung-Ming Chung & Keh-Chin Chang & Tsong-Sheng Lee, 2012. "Performance of Thermosyphon Solar Water Heaters in Series," Energies, MDPI, vol. 5(9), pages 1-13, August.
    12. Silverman, Rochelle E. & Flores, Robert J. & Brouwer, Jack, 2020. "Energy and economic assessment of distributed renewable gas and electricity generation in a small disadvantaged urban community," Applied Energy, Elsevier, vol. 280(C).
    13. Mihaela PÃCE?ILÃ, 2015. "Solar Energy Policy Developments In Europe," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 10(1), pages 13-24, February.
    14. Altwies, Joy E. & Nemet, Gregory F., 2013. "Innovation in the U.S. building sector: An assessment of patent citations in building energy control technology," Energy Policy, Elsevier, vol. 52(C), pages 819-831.
    15. Garrett, Vicki & Koontz, Tomas M., 2008. "Breaking the cycle: Producer and consumer perspectives on the non-adoption of passive solar housing in the US," Energy Policy, Elsevier, vol. 36(4), pages 1551-1566, April.
    16. Qiu, Shoufeng & Ruth, Matthias & Ghosh, Sanchari, 2015. "Evacuated tube collectors: A notable driver behind the solar water heater industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 580-588.
    17. Yurtsev, Arif & Jenkins, Glenn P., 2016. "Cost-effectiveness analysis of alternative water heater systems operating with unreliable water supplies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 174-183.
    18. Barker, Terry & Ekins, Paul & Foxon, Tim, 2007. "Macroeconomic effects of efficiency policies for energy-intensive industries: The case of the UK Climate Change Agreements, 2000-2010," Energy Economics, Elsevier, vol. 29(4), pages 760-778, July.
    19. Alexander Melnik & Irina Naoumova & Kirill Ermolaev & Jerome Katrichis, 2021. "Driving Innovation through Energy Efficiency: A Russian Regional Analysis," Sustainability, MDPI, vol. 13(9), pages 1-19, April.
    20. Gasparatos, Alexandros & Gadda, Tatiana, 2009. "Environmental support, energy security and economic growth in Japan," Energy Policy, Elsevier, vol. 37(10), pages 4038-4048, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:83:y:2015:i:c:p:1279-1286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.