IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v69y2014icp103-113.html
   My bibliography  Save this article

Carbon footprint of renewable diesel from palm oil, jatropha oil and rapeseed oil

Author

Listed:
  • Uusitalo, V.
  • Väisänen, S.
  • Havukainen, J.
  • Havukainen, M.
  • Soukka, R.
  • Luoranen, M.

Abstract

This paper examines the carbon footprint of renewable diesel (RD) production from palm oil, jatropha oil and rapeseed oil. Greenhouse gas (GHG) emissions from land use change (LUC), feedstock cultivation processes, and RD production and delivery are studied from a life-cycle assessment perspective. The goal of the paper is to calculate the carbon footprint of RD and recommend ways of decreasing it. Our findings indicate that the key contributors to the carbon footprint of RD are found in the GHG emissions of LUC, feedstock cultivation and oil extraction processes. In the case of palm oil, methane collection from palm oil mill effluent (POME) is one of the main contributors to the carbon footprint. Our calculations demonstrate that the RD production and distribution stages generate relatively low GHG emissions compared to the other life-cycle stages; therefore, attention should be focused on the contributing role of LUC and cultivation processes to the RD carbon footprint. If cultivation requires a land use conversion from forest to cultivated land, the resultant GHG emissions exceed emission levels from fossil fuels. If feedstock cultivation is done with no LUC or if grasslands are the feedstock cultivation site, then cultivation GHG emission reductions are achieved. In some cases, RD production may even act as a sink for GHGs. Due to its quality RD can be used without blend-wall limitations in vehicles; therefore, it offers a higher biofuel potential for the diesel sector than does traditional biodiesel. The article concludes by discussing the implications of the findings for RD in light of GHG emission reductions.

Suggested Citation

  • Uusitalo, V. & Väisänen, S. & Havukainen, J. & Havukainen, M. & Soukka, R. & Luoranen, M., 2014. "Carbon footprint of renewable diesel from palm oil, jatropha oil and rapeseed oil," Renewable Energy, Elsevier, vol. 69(C), pages 103-113.
  • Handle: RePEc:eee:renene:v:69:y:2014:i:c:p:103-113
    DOI: 10.1016/j.renene.2014.03.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114001657
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.03.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoshihito Shirai & Minato Wakisaka & Shahrakbah Yacob & Mohd Ali Hassan & Shin’ichi Suzuki, 2003. "Reduction of Methane Released from Palm Oil Mill Lagoon in Malaysia and Its Countermeasures," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 8(3), pages 237-252, September.
    2. J. Germer & J. Sauerborn, 2008. "Estimation of the impact of oil palm plantation establishment on greenhouse gas balance," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 10(6), pages 697-716, December.
    3. Soratana, Kullapa & Harper Jr., Willie F. & Landis, Amy E., 2012. "Microalgal biodiesel and the Renewable Fuel Standard's greenhouse gas requirement," Energy Policy, Elsevier, vol. 46(C), pages 498-510.
    4. Silalertruksa, Thapat & Gheewala, Shabbir H., 2012. "Environmental sustainability assessment of palm biodiesel production in Thailand," Energy, Elsevier, vol. 43(1), pages 306-314.
    5. Yanfen, Liao & Zehao, Huang & Xiaoqian, Ma, 2012. "Energy analysis and environmental impacts of microalgal biodiesel in China," Energy Policy, Elsevier, vol. 45(C), pages 142-151.
    6. Nevena Lukovic & Dejan Bezbradica & Zorica Knezevic-Jugovic, 2011. "Biodiesel Fuel Production by Enzymatic Transesterification of Oils: Recent Trends, Challenges and Future Perspectives," Chapters, in: Maximino Manzanera (ed.), Alternative Fuel, IntechOpen.
    7. Chen, H. & Chen, G.Q., 2011. "Energy cost of rapeseed-based biodiesel as alternative energy in China," Renewable Energy, Elsevier, vol. 36(5), pages 1374-1378.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irwa Issa & Sebastian Delbrück & Ulrich Hamm, 2019. "Bioeconomy from experts’ perspectives – Results of a global expert survey," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-22, May.
    2. Schönsteiner, Karl & Massier, Tobias & Hamacher, Thomas, 2016. "Sustainable transport by use of alternative marine and aviation fuels—A well-to-tank analysis to assess interactions with Singapore's energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 853-871.
    3. Karlsson, Johan & Brunzell, Lena & Venkatesh, G., 2018. "Material-flow analysis, energy analysis, and partial environmental-LCA of a district-heating combined heat and power plant in Sweden," Energy, Elsevier, vol. 144(C), pages 31-40.
    4. Väisänen, S. & Havukainen, J. & Uusitalo, V. & Havukainen, M. & Soukka, R. & Luoranen, M., 2016. "Carbon footprint of biobutanol by ABE fermentation from corn and sugarcane," Renewable Energy, Elsevier, vol. 89(C), pages 401-410.
    5. Culman, María & de Farias, Claudio M. & Bayona, Cristihian & Cabrera Cruz, José Daniel, 2019. "Using agrometeorological data to assist irrigation management in oil palm crops: A decision support method and results from crop model simulation," Agricultural Water Management, Elsevier, vol. 213(C), pages 1047-1062.
    6. Prestipino, Mauro & Salmeri, Fabio & Cucinotta, Filippo & Galvagno, Antonio, 2021. "Thermodynamic and environmental sustainability analysis of electricity production from an integrated cogeneration system based on residual biomass: A life cycle approach," Applied Energy, Elsevier, vol. 295(C).
    7. García, Carlos A. & Riegelhaupt, Enrique & Ghilardi, Adrián & Skutsch, Margaret & Islas, Jorge & Manzini, Fabio & Masera, Omar, 2015. "Sustainable bioenergy options for Mexico: GHG mitigation and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 545-552.
    8. Archer, Sophie A. & Murphy, Richard J. & Steinberger-Wilckens, Robert, 2018. "Methodological analysis of palm oil biodiesel life cycle studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 694-704.
    9. Azhar, Badrul & Nobilly, Frisco & Lechner, Alex M. & Tohiran, Kamil Azmi & Maxwell, Thomas M.R. & Zulkifli, Raja & Kamel, Mohd Fathil & Oon, Aslinda, 2021. "Mitigating the risks of indirect land use change (ILUC) related deforestation from industrial palm oil expansion by sharing land access with displaced crop and cattle farmers," Land Use Policy, Elsevier, vol. 107(C).
    10. Ville Uusitalo & Rafael Horn & Stephanie D. Maier, 2022. "Assessing Land Use Efficiencies and Land Quality Impacts of Renewable Transportation Energy Systems for Passenger Cars Using the LANCA ® Method," Sustainability, MDPI, vol. 14(10), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Collet, Pierre & Hélias, Arnaud & Lardon, Laurent & Steyer, Jean-Philippe & Bernard, Olivier, 2015. "Recommendations for Life Cycle Assessment of algal fuels," Applied Energy, Elsevier, vol. 154(C), pages 1089-1102.
    2. Avinash, A. & Subramaniam, D. & Murugesan, A., 2014. "Bio-diesel—A global scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 517-527.
    3. Yoyon Wahyono & Hadiyanto Hadiyanto & Mochamad Arief Budihardjo & Joni Safaat Adiansyah, 2020. "Assessing the Environmental Performance of Palm Oil Biodiesel Production in Indonesia: A Life Cycle Assessment Approach," Energies, MDPI, vol. 13(12), pages 1-25, June.
    4. Shin, Jungwoo & Hwang, Won-Sik, 2017. "Consumer preference and willingness to pay for a renewable fuel standard (RFS) policy: Focusing on ex-ante market analysis and segmentation," Energy Policy, Elsevier, vol. 106(C), pages 32-40.
    5. Jensen, Henning Tarp & Keogh-Brown, Marcus R. & Shankar, Bhavani & Aekplakorn, Wichai & Basu, Sanjay & Cuevas, Soledad & Dangour, Alan D. & Gheewala, Shabbir H. & Green, Rosemary & Joy, Edward J.M. & , 2019. "Palm oil and dietary change: Application of an integrated macroeconomic, environmental, demographic, and health modelling framework for Thailand," Food Policy, Elsevier, vol. 83(C), pages 92-103.
    6. Xue, Xiaobo & Pang, YuLei & Landis, Amy E., 2014. "Evaluating agricultural management practices to improve the environmental footprint of corn-derived ethanol," Renewable Energy, Elsevier, vol. 66(C), pages 454-460.
    7. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    8. Xu, Yang-Jie & Li, Guo-Xiu & Sun, Zuo-Yu, 2016. "Development of biodiesel industry in China: Upon the terms of production and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 318-330.
    9. Alicia Vanessa Jeffary & Osumanu Haruna Ahmed & Roland Kueh Jui Heng & Liza Nuriati Lim Kim Choo & Latifah Omar & Adiza Alhassan Musah & Arifin Abdu, 2021. "Nitrous Oxide Emissions in Pineapple Cultivation on a Tropical Peat Soil," Sustainability, MDPI, vol. 13(9), pages 1-14, April.
    10. Thomassen, Gwenny & Van Dael, Miet & Lemmens, Bert & Van Passel, Steven, 2017. "A review of the sustainability of algal-based biorefineries: Towards an integrated assessment framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 876-887.
    11. Arcigni, Francesco & Friso, Riccardo & Collu, Maurizio & Venturini, Mauro, 2019. "Harmonized and systematic assessment of microalgae energy potential for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 614-624.
    12. Dislich, Claudia & Hettig, Elisabeth & Heinonen, Johannes & Lay, Jann & Meyer, Katrin M. & Tarigan, Suria & Wiegand, Kerstin, 2015. "Towards an integrated ecological-economic land-use change model," EFForTS Discussion Paper Series 17, University of Goettingen, Collaborative Research Centre 990 "EFForTS, Ecological and Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems (Sumatra, Indonesia)".
    13. Rulli, Maria Cristina & Casirati, Stefano & Dell’Angelo, Jampel & Davis, Kyle Frankel & Passera, Corrado & D’Odorico, Paolo, 2019. "Interdependencies and telecoupling of oil palm expansion at the expense of Indonesian rainforest," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 499-512.
    14. Chidozie Charles Nnaji & Nkpa Mba Ogarekpe & Ekene Jude Nwankwo, 2022. "Temporal and spatial dynamics of land use and land cover changes in derived savannah hydrological basin of Enugu State, Nigeria," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9598-9622, July.
    15. Najat Omran & Amir Hamzah Sharaai & Ahmad Hariza Hashim, 2021. "Visualization of the Sustainability Level of Crude Palm Oil Production: A Life Cycle Approach," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    16. Tang, YuTing & Ma, XiaoQian & Lai, ZhiYi & Chen, Yong, 2013. "Energy analysis and environmental impacts of a MSW oxy-fuel incineration power plant in China," Energy Policy, Elsevier, vol. 60(C), pages 132-141.
    17. Niblick, Briana & Landis, Amy E., 2016. "Assessing renewable energy potential on United States marginal and contaminated sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 489-497.
    18. Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Pang, Mingyue, 2021. "Energy return on investment (EROI) of biomass conversion systems in China: Meta-analysis focused on system boundary unification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    19. Hassan, Mohd Nor Azman & Jaramillo, Paulina & Griffin, W. Michael, 2011. "Life cycle GHG emissions from Malaysian oil palm bioenergy development: The impact on transportation sector's energy security," Energy Policy, Elsevier, vol. 39(5), pages 2615-2625, May.
    20. Strzalka, Rafal & Schneider, Dietrich & Eicker, Ursula, 2017. "Current status of bioenergy technologies in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 801-820.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:69:y:2014:i:c:p:103-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.