IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v50y2013icp826-832.html
   My bibliography  Save this article

Grid vs. storage in a 100% renewable Europe

Author

Listed:
  • Steinke, Florian
  • Wolfrum, Philipp
  • Hoffmann, Clemens

Abstract

Intermittent renewable power production from wind and sun requires significant backup generation to cover the power demand at all times. This holds even if wind and sun produce on average 100% of the required energy. Backup generation can be reduced through storage – averaging in time – and/or grid extensions – averaging in space. This report examines the interplay of these technologies with respect to the reduction of required backup energy. We systematically explore a wide parameter space of combinations of both technologies. Our simple, yet informative approach quantifies the backup energy demand for each scenario. We also estimate the resulting total system costs which allow us to discuss cost-optimal system designs.

Suggested Citation

  • Steinke, Florian & Wolfrum, Philipp & Hoffmann, Clemens, 2013. "Grid vs. storage in a 100% renewable Europe," Renewable Energy, Elsevier, vol. 50(C), pages 826-832.
  • Handle: RePEc:eee:renene:v:50:y:2013:i:c:p:826-832
    DOI: 10.1016/j.renene.2012.07.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112004818
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.07.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heide, Dominik & von Bremen, Lueder & Greiner, Martin & Hoffmann, Clemens & Speckmann, Markus & Bofinger, Stefan, 2010. "Seasonal optimal mix of wind and solar power in a future, highly renewable Europe," Renewable Energy, Elsevier, vol. 35(11), pages 2483-2489.
    2. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    3. Schaber, Katrin & Steinke, Florian & Mühlich, Pascal & Hamacher, Thomas, 2012. "Parametric study of variable renewable energy integration in Europe: Advantages and costs of transmission grid extensions," Energy Policy, Elsevier, vol. 42(C), pages 498-508.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gils, Hans Christian & Scholz, Yvonne & Pregger, Thomas & Luca de Tena, Diego & Heide, Dominik, 2017. "Integrated modelling of variable renewable energy-based power supply in Europe," Energy, Elsevier, vol. 123(C), pages 173-188.
    2. Dalala, Zakariya & Al-Omari, Murad & Al-Addous, Mohammad & Bdour, Mathhar & Al-Khasawneh, Yaqoub & Alkasrawi, Malek, 2022. "Increased renewable energy penetration in national electrical grids constraints and solutions," Energy, Elsevier, vol. 246(C).
    3. Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
    4. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    5. Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
    6. Rodriguez, Rolando A. & Becker, Sarah & Greiner, Martin, 2015. "Cost-optimal design of a simplified, highly renewable pan-European electricity system," Energy, Elsevier, vol. 83(C), pages 658-668.
    7. Chattopadhyay, Kabitri & Kies, Alexander & Lorenz, Elke & von Bremen, Lüder & Heinemann, Detlev, 2017. "The impact of different PV module configurations on storage and additional balancing needs for a fully renewable European power system," Renewable Energy, Elsevier, vol. 113(C), pages 176-189.
    8. Lopion, Peter & Markewitz, Peter & Robinius, Martin & Stolten, Detlef, 2018. "A review of current challenges and trends in energy systems modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 156-166.
    9. Mads Raunbak & Timo Zeyer & Kun Zhu & Martin Greiner, 2017. "Principal Mismatch Patterns Across a Simplified Highly Renewable European Electricity Network," Energies, MDPI, vol. 10(12), pages 1-13, November.
    10. Scholz, Yvonne & Gils, Hans Christian & Pietzcker, Robert C., 2017. "Application of a high-detail energy system model to derive power sector characteristics at high wind and solar shares," Energy Economics, Elsevier, vol. 64(C), pages 568-582.
    11. Haas, J. & Cebulla, F. & Cao, K. & Nowak, W. & Palma-Behnke, R. & Rahmann, C. & Mancarella, P., 2017. "Challenges and trends of energy storage expansion planning for flexibility provision in low-carbon power systems – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 603-619.
    12. Weitemeyer, Stefan & Kleinhans, David & Vogt, Thomas & Agert, Carsten, 2015. "Integration of Renewable Energy Sources in future power systems: The role of storage," Renewable Energy, Elsevier, vol. 75(C), pages 14-20.
    13. Goop, Joel & Odenberger, Mikael & Johnsson, Filip, 2017. "The effect of high levels of solar generation on congestion in the European electricity transmission grid," Applied Energy, Elsevier, vol. 205(C), pages 1128-1140.
    14. Pietzcker, Robert C. & Ueckerdt, Falko & Carrara, Samuel & de Boer, Harmen Sytze & Després, Jacques & Fujimori, Shinichiro & Johnson, Nils & Kitous, Alban & Scholz, Yvonne & Sullivan, Patrick & Ludere, 2017. "System integration of wind and solar power in integrated assessment models: A cross-model evaluation of new approaches," Energy Economics, Elsevier, vol. 64(C), pages 583-599.
    15. Pleßmann, Guido & Blechinger, Philipp, 2017. "Outlook on South-East European power system until 2050: Least-cost decarbonization pathway meeting EU mitigation targets," Energy, Elsevier, vol. 137(C), pages 1041-1053.
    16. Deetjen, Thomas A. & Martin, Henry & Rhodes, Joshua D. & Webber, Michael E., 2018. "Modeling the optimal mix and location of wind and solar with transmission and carbon pricing considerations," Renewable Energy, Elsevier, vol. 120(C), pages 35-50.
    17. Barnacle, M. & Robertson, E. & Galloway, S. & Barton, J. & Ault, G., 2013. "Modelling generation and infrastructure requirements for transition pathways," Energy Policy, Elsevier, vol. 52(C), pages 60-75.
    18. Rodríguez, Rolando A. & Becker, Sarah & Andresen, Gorm B. & Heide, Dominik & Greiner, Martin, 2014. "Transmission needs across a fully renewable European power system," Renewable Energy, Elsevier, vol. 63(C), pages 467-476.
    19. Mahesh, Aeidapu & Sandhu, Kanwarjit Singh, 2015. "Hybrid wind/photovoltaic energy system developments: Critical review and findings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1135-1147.
    20. Verzijlbergh, Remco & Brancucci Martínez-Anido, Carlo & Lukszo, Zofia & de Vries, Laurens, 2014. "Does controlled electric vehicle charging substitute cross-border transmission capacity?," Applied Energy, Elsevier, vol. 120(C), pages 169-180.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:50:y:2013:i:c:p:826-832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.