IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v50y2013icp142-149.html
   My bibliography  Save this article

Environmental life cycle assessment of rapeseed straight vegetable oil as self-supply agricultural biofuel

Author

Listed:
  • Grau, Baquero
  • Bernat, Esteban
  • Rita, Puig
  • Jordi-Roger, Riba
  • Antoni, Rius

Abstract

Biofuels are nowadays considered a questionable environmental alternative to fossil fuels. In that context, this work analyses the environmental impacts when introducing rapeseed on the traditional and current wheat and barley agricultural rotation by means of a comparative life cycle assessment (LCA). The introduction of rapeseed, the correctness of its conversion to obtain straight vegetable oil and its use as self-consumption biofuel in tractors are evaluated. Life cycle assessment is used in this work to evaluate the impacts of different considered scenarios. A sensitivity analysis has also been conducted. The results presented show a modest environmental improvement (diminishment of 6 out of the 10 analyzed environmental impacts) when introducing rapeseed to local crop rotations and its partial conversion to oil to be used as fuel in existing diesel engines. Additionally, the ratio between the energy obtained and the total energy input shows moderate positive results when comparing the latter case with the current one. Results from this study can be used to support research and decision making to assess the convenience of introducing alternative fuels in agricultural exploitations.

Suggested Citation

  • Grau, Baquero & Bernat, Esteban & Rita, Puig & Jordi-Roger, Riba & Antoni, Rius, 2013. "Environmental life cycle assessment of rapeseed straight vegetable oil as self-supply agricultural biofuel," Renewable Energy, Elsevier, vol. 50(C), pages 142-149.
  • Handle: RePEc:eee:renene:v:50:y:2013:i:c:p:142-149
    DOI: 10.1016/j.renene.2012.06.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112003825
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.06.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grau, Baquero & Bernat, Esteban & Antoni, Rius & Jordi-Roger, Riba & Rita, Puig, 2010. "Small-scale production of straight vegetable oil from rapeseed and its use as biofuel in the Spanish territory," Energy Policy, Elsevier, vol. 38(1), pages 189-196, January.
    2. Bindraban, Prem S. & Bulte, Erwin H. & Conijn, Sjaak G., 2009. "Can large-scale biofuels production be sustainable by 2020?," Agricultural Systems, Elsevier, vol. 101(3), pages 197-199, July.
    3. Labeckas, Gvidonas & Slavinskas, Stasys, 2006. "Performance of direct-injection off-road diesel engine on rapeseed oil," Renewable Energy, Elsevier, vol. 31(6), pages 849-863.
    4. Russi, Daniela, 2008. "An integrated assessment of a large-scale biodiesel production in Italy: Killing several birds with one stone?," Energy Policy, Elsevier, vol. 36(3), pages 1169-1180, March.
    5. de Souza, Simone Pereira & Pacca, Sergio & de Ávila, Márcio Turra & Borges, José Luiz B., 2010. "Greenhouse gas emissions and energy balance of palm oil biofuel," Renewable Energy, Elsevier, vol. 35(11), pages 2552-2561.
    6. Cherubini, Francesco, 2010. "GHG balances of bioenergy systems – Overview of key steps in the production chain and methodological concerns," Renewable Energy, Elsevier, vol. 35(7), pages 1565-1573.
    7. He, Y & Bao, Y.D, 2003. "Study on rapeseed oil as alternative fuel for a single-cylinder diesel engine," Renewable Energy, Elsevier, vol. 28(9), pages 1447-1453.
    8. Goldemberg, José & Guardabassi, Patricia, 2009. "Are biofuels a feasible option?," Energy Policy, Elsevier, vol. 37(1), pages 10-14, January.
    9. Hossain, A.K. & Davies, P.A., 2010. "Plant oils as fuels for compression ignition engines: A technical review and life-cycle analysis," Renewable Energy, Elsevier, vol. 35(1), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramos Tercero, Elia Armandina & Sforza, Eleonora & Bertucco, Alberto, 2013. "Energy profitability analysis for microalgal biocrude production," Energy, Elsevier, vol. 60(C), pages 373-379.
    2. Rajaeifar, Mohammad Ali & Abdi, Reza & Tabatabaei, Meisam, 2017. "Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 278-298.
    3. Xue, Xiaobo & Pang, YuLei & Landis, Amy E., 2014. "Evaluating agricultural management practices to improve the environmental footprint of corn-derived ethanol," Renewable Energy, Elsevier, vol. 66(C), pages 454-460.
    4. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Russo, D. & Dassisti, M. & Lawlor, V. & Olabi, A.G., 2012. "State of the art of biofuels from pure plant oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4056-4070.
    2. Vo, Long Hai & Le, Thai-Ha, 2021. "Eatery, energy, environment and economic system, 1970–2017: Understanding volatility spillover patterns in a global sample," Energy Economics, Elsevier, vol. 100(C).
    3. Borugadda, Venu Babu & Goud, Vaibhav V., 2012. "Biodiesel production from renewable feedstocks: Status and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4763-4784.
    4. Qi, D.H. & Bae, C. & Feng, Y.M. & Jia, C.C. & Bian, Y.Z., 2013. "Preparation, characterization, engine combustion and emission characteristics of rapeseed oil based hybrid fuels," Renewable Energy, Elsevier, vol. 60(C), pages 98-106.
    5. Grau, Baquero & Bernat, Esteban & Antoni, Rius & Jordi-Roger, Riba & Rita, Puig, 2010. "Small-scale production of straight vegetable oil from rapeseed and its use as biofuel in the Spanish territory," Energy Policy, Elsevier, vol. 38(1), pages 189-196, January.
    6. No, Soo-Young, 2017. "Application of straight vegetable oil from triglyceride based biomass to IC engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 80-97.
    7. Dufour, Javier & Iribarren, Diego, 2012. "Life cycle assessment of biodiesel production from free fatty acid-rich wastes," Renewable Energy, Elsevier, vol. 38(1), pages 155-162.
    8. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    9. Castanheira, Érica Geraldes & Acevedo, Helmer & Freire, Fausto, 2014. "Greenhouse gas intensity of palm oil produced in Colombia addressing alternative land use change and fertilization scenarios," Applied Energy, Elsevier, vol. 114(C), pages 958-967.
    10. Aldhaidhawi, Mohanad & Chiriac, Radu & Badescu, Viorel, 2017. "Ignition delay, combustion and emission characteristics of Diesel engine fueled with rapeseed biodiesel – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 178-186.
    11. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    12. Turetta, Ana Paula Dias & Kuyper, Thomas & Malheiros, Tadeu Fabrício & Coutinho, Heitor Luiz da Costa, 2017. "A framework proposal for sustainability assessment of sugarcane in Brazil," Land Use Policy, Elsevier, vol. 68(C), pages 597-603.
    13. Negash, Martha & Swinnen, Johan F.M., 2013. "Biofuels and food security: Micro-evidence from Ethiopia," Energy Policy, Elsevier, vol. 61(C), pages 963-976.
    14. Asante, Dennis & He, Zheng & Adjei, Nana Osae & Asante, Bismark, 2020. "Exploring the barriers to renewable energy adoption utilising MULTIMOORA- EDAS method," Energy Policy, Elsevier, vol. 142(C).
    15. Mandolesi de Araújo, Carlos Daniel & de Andrade, Claudia Cristina & de Souza e Silva, Erika & Dupas, Francisco Antonio, 2013. "Biodiesel production from used cooking oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 445-452.
    16. Kimming, M. & Sundberg, C. & Nordberg, Å. & Hansson, P.-A., 2015. "Vertical integration of local fuel producers into rural district heating systems – Climate impact and production costs," Energy Policy, Elsevier, vol. 78(C), pages 51-61.
    17. Monia El Akkari & Nosra Ben Fradj & Benoît Gabrielle & Sylvestre Njakou Djomo, 2023. "Spatially-explicit environmental assessment of bioethanol from miscanthus and switchgrass in France [Évaluation environnementale spatialement explicite du bioéthanol produit à partir de miscanthus ," Post-Print hal-04369771, HAL.
    18. Charlotte Stead & Zia Wadud & Chris Nash & Hu Li, 2019. "Introduction of Biodiesel to Rail Transport: Lessons from the Road Sector," Sustainability, MDPI, vol. 11(3), pages 1-20, February.
    19. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    20. Piotr Łagowski & Grzegorz Wcisło & Dariusz Kurczyński, 2022. "Comparison of the Combustion Process Parameters in a Diesel Engine Powered by Second-Generation Biodiesel Compared to the First-Generation Biodiesel," Energies, MDPI, vol. 15(18), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:50:y:2013:i:c:p:142-149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.