IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v211y2023icp361-369.html
   My bibliography  Save this article

Persica Akhani Salicornia as novel biodiesel feedstock production for economic prosperity in salty and water scarcity areas: Optimized oil extraction process and transesterification reaction using new magnetic heterogenous nanocatalysts

Author

Listed:
  • Karimian, A.
  • Pourhoseini, S.H.
  • Nozari, A.

Abstract

As a new biodiesel feedstock, the oil extraction procedure from the seeds of the plant Salicornia (Persica Akhani subspecies) has been developed. Oil extraction from the seeds of the Salicornia Persica Akhani has been researched utilizing two different organic solvents and four different procedures, including the Soxhlet method, the traditional approach, the shaker method, and the ultrasonic probe method. The results indicated that oil yield by ultrasonic probe technique was higher than the other methods in a short time. Based on the outcomes, extracting the oil from Salicornia seeds using hexane resulted in a greater yield of oil than petroleum ether. This was true across all methods of extraction. The Physico-chemical properties and antioxidant activity of extracted oil suggested its suitability for biodiesel production. To transesterification reaction of Salicornia seeds oil with methanol into biodiesel, the heterogeneous magnetic Zn0.4Ni0.6Fe2O4 and Zn0.4Ni0.6Fe2O4@SO3H nanocomposites have been synthesized by sol-gel auto combustion procedure. FT-IR, FE-SEM, EDS, and VSM were used to determine the characteristics of the heterogeneous nanocomposites. These nanoparticles have a strong attraction to an outside magnet, which makes it much easier to collect them from the reaction environment for subsequent reuse. In the process of transesterification of Salicornia oil with methanol, novel sulfonated heterogeneous magnetic catalysts with a high density of superacid sites on the surface (2.50 mmol SO3H g−1) and significant magnetization (60 emu/g) afforded high activity and produced a biodiesel yield of 96%. In addition, the magnetic Zn0.4Ni0.6Fe2O4@SO3H nanoparticles could be reused up to five times in the process of turning oil into biodiesel, which resulted in reduced expenses associated with the manufacture of biodiesel. FT-IR and SEM analyses were performed both before and after the transesterification process, and the results showed that the absorption bands and particle distribution were practically the same in both new and used catalysts. The analysis of the FT-IR spectra reveals indications of the transformation of Salicornia oil into fatty acid methyl esters (FAMEs). Gas chromatography (GC) study of the FAME profiles of the as-prepared biodiesel also indicated that palmitic acid (C16:0) was the most saturated fatty acid (8.44%–8.50%), while linoleic acid (18:2) was the predominant unsaturated fatty acid (60.94%–60.97%).

Suggested Citation

  • Karimian, A. & Pourhoseini, S.H. & Nozari, A., 2023. "Persica Akhani Salicornia as novel biodiesel feedstock production for economic prosperity in salty and water scarcity areas: Optimized oil extraction process and transesterification reaction using new," Renewable Energy, Elsevier, vol. 211(C), pages 361-369.
  • Handle: RePEc:eee:renene:v:211:y:2023:i:c:p:361-369
    DOI: 10.1016/j.renene.2023.04.119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123005852
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.04.119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Jesus, Sérgio S. & Ferreira, Gabriela F. & Moreira, Larissa S. & Filho, Rubens Maciel, 2020. "Biodiesel production from microalgae by direct transesterification using green solvents," Renewable Energy, Elsevier, vol. 160(C), pages 1283-1294.
    2. Li, Ruizhi & Wang, Shuang & Zhang, Huicong & Li, Fashe & Sui, Meng, 2022. "Synthesis, antioxidant properties, and oil solubility of a novel ionic liquid [UIM0Y2][C6H2(OH)3COO] in biodiesel," Renewable Energy, Elsevier, vol. 197(C), pages 545-551.
    3. Mukhtar, Ahmad & Saqib, Sidra & Lin, Hongfei & Hassan Shah, Mansoor Ul & Ullah, Sami & Younas, Muhammad & Rezakazemi, Mashallah & Ibrahim, Muhammad & Mahmood, Abid & Asif, Saira & Bokhari, Awais, 2022. "Current status and challenges in the heterogeneous catalysis for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Aghel, Babak & Gouran, Ashkan & Parandi, Ehsan & Jumeh, Binta Hadi & Nodeh, Hamid Rashidi, 2022. "Production of biodiesel from high acidity waste cooking oil using nano GO@MgO catalyst in a microreactor," Renewable Energy, Elsevier, vol. 200(C), pages 294-302.
    5. Hu, Ningmeng & Ning, Ping & He, Liang & Guan, Qingqing & Shi, Yuzhen & Miao, Rongrong, 2021. "Near-room temperature transesterification over bifunctional CunO-Bs/SBA-15 catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 170(C), pages 1-11.
    6. Murillo, Gabriel & Ali, Sameh S. & Sun, Jianzhong & Yan, Yunjun & Bartocci, Pietro & El-Zawawy, Nessma & Azab, Maha & He, Yaojia & Fantozzi, Francesco, 2019. "Ultrasonic emulsification assisted immobilized Burkholderia cepacia lipase catalyzed transesterification of soybean oil for biodiesel production in a novel reactor design," Renewable Energy, Elsevier, vol. 135(C), pages 1025-1034.
    7. Sahar, Juma & Farooq, Muhammad & Ramli, Anita & Naeem, Abdul & Khattak, Noor Saeed & Ghazi, Zahid Ali, 2022. "Highly efficient heteropoly acid decorated SnO2@Co-ZIF nanocatalyst for sustainable biodiesel production from Nannorrhops ritchiana seeds oil," Renewable Energy, Elsevier, vol. 198(C), pages 306-318.
    8. Seffati, Kambiz & Esmaeili, Hossein & Honarvar, Bizhan & Esfandiari, Nadia, 2020. "AC/CuFe2O4@CaO as a novel nanocatalyst to produce biodiesel from chicken fat," Renewable Energy, Elsevier, vol. 147(P1), pages 25-34.
    9. Yahya, Muhammad & Dutta, Anupam & Bouri, Elie & Wadström, Christoffer & Uddin, Gazi Salah, 2022. "Dependence structure between the international crude oil market and the European markets of biodiesel and rapeseed oil," Renewable Energy, Elsevier, vol. 197(C), pages 594-605.
    10. Chang, Ting-Huan & Su, Hsin-Mei, 2010. "The substitutive effect of biofuels on fossil fuels in the lower and higher crude oil price periods," Energy, Elsevier, vol. 35(7), pages 2807-2813.
    11. AlSharifi, Mariam & Znad, Hussein, 2020. "Transesterification of waste canola oil by lithium/zinc composite supported on waste chicken bone as an effective catalyst," Renewable Energy, Elsevier, vol. 151(C), pages 740-749.
    12. Lau, Pak-Chung & Kwong, Tsz-Lung & Yung, Ka-Fu, 2022. "Manganese glycerolate catalyzed simultaneous esterification and transesterification: The kinetic and mechanistic study, and application in biodiesel and bio-lubricants synthesis," Renewable Energy, Elsevier, vol. 189(C), pages 549-558.
    13. Miladinović, Marija R. & Krstić, Jugoslav B. & Zdujić, Miodrag V. & Veselinović, Ljiljana M. & Veljović, Djordje N. & Banković-Ilić, Ivana B. & Stamenković, Olivera S. & Veljković, Vlada B., 2022. "Transesterification of used cooking sunflower oil catalyzed by hazelnut shell ash," Renewable Energy, Elsevier, vol. 183(C), pages 103-113.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nahas, Lea & Dahdah, Eliane & Aouad, Samer & El Khoury, Bilal & Gennequin, Cedric & Abi Aad, Edmond & Estephane, Jane, 2023. "Highly efficient scallop seashell-derived catalyst for biodiesel production from sunflower and waste cooking oils: Reaction kinetics and effect of calcination temperature studies," Renewable Energy, Elsevier, vol. 202(C), pages 1086-1095.
    2. Daabo, Ahmed M. & Saeed, Liqaa I. & Altamer, Marwa H. & Fadhil, Abdelrahman B. & Badawy, Tawfik, 2022. "The production of bio-based fuels and carbon catalysts from chicken waste," Renewable Energy, Elsevier, vol. 201(P1), pages 21-34.
    3. Mensi, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong & Yoon, Seong-Min, 2014. "Dynamic spillovers among major energy and cereal commodity prices," Energy Economics, Elsevier, vol. 43(C), pages 225-243.
    4. Oliveira, Anne Caroline Defranceschi & Frensch, Gustavo & Marques, Francisco de Assis & Vargas, José Viriato Coelho & Rodrigues, Maria Luiza Fernandes & Mariano, André Bellin, 2020. "Production of methyl oleate by direct addition of fermented solid Penicillium sumatrense and Aspergillus fumigatus," Renewable Energy, Elsevier, vol. 162(C), pages 1132-1139.
    5. Karmakar, Bisheswar & Pal, Sucharita & Gopikrishna, Konga & Tiwari, Onkar Nath & Halder, Gopinath, 2022. "Injection of superheated C1 and C3 alcohols in non-edible Pongamia pinnata oil for semi-continuous uncatalyzed biodiesel synthesis," Renewable Energy, Elsevier, vol. 185(C), pages 850-861.
    6. Hao, Na & Colson, Gregory & Seong, Byeongchan & Park, Cheolwoo & Wetzstein, Michael, 2015. "Drought, ethanol, and livestock," Energy Economics, Elsevier, vol. 49(C), pages 301-307.
    7. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    8. Heckelei, T. & Amrouk, E.M. & Grosche, S., 2018. "International interdependence between cash crop and staple food futures price indices: A wavelet-BEKK-GARCH assessment," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277376, International Association of Agricultural Economists.
    9. Davide, Marinella & Vesco, Paola, 2016. "Alternative Approaches for Rating INDCs: a Comparative Analysis," MITP: Mitigation, Innovation and Transformation Pathways 232716, Fondazione Eni Enrico Mattei (FEEM).
    10. Khan, Ihtisham Wali & Naeem, Abdul & Farooq, Muhammad & Mahmood, Tahira & Ahmad, Bashir & Hamayun, Muhammad & Ahmad, Zahoor & Saeed, Tooba, 2020. "Catalytic conversion of spent frying oil into biodiesel over raw and 12-tungsto-phosphoric acid modified clay," Renewable Energy, Elsevier, vol. 155(C), pages 181-188.
    11. Rodrigo Salvador & Reinalda Blanco Pereira & Gabriel Fernandes Sales & Vanessa Campana Vergani Oliveira & Anthony Halog & Antonio C. Francisco, 2022. "Current Panorama, Practice Gaps, and Recommendations to Accelerate the Transition to a Circular Bioeconomy in Latin America and the Caribbean," Circular Economy and Sustainability,, Springer.
    12. Serra, Teresa & Gil, José M., 2012. "Biodiesel as a motor fuel price stabilization mechanism," Energy Policy, Elsevier, vol. 50(C), pages 689-698.
    13. Wang, Jian & Shao, Wei & Kim, Junseok, 2020. "Analysis of the impact of COVID-19 on the correlations between crude oil and agricultural futures," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    14. Al-Hamamre, Zayed & Sandouqa, Arwa & Al-Saida, Basel & Shawabkeh, Reyad A. & Alnaief, Mohammad, 2023. "Biodiesel production from waste cooking oil using heterogeneous KNO3/Oil shale ash catalyst," Renewable Energy, Elsevier, vol. 211(C), pages 470-483.
    15. Jiang, Jingze & Marsh, Thomas L. & Tozer, Peter R., 2015. "Policy induced price volatility transmission: Linking the U.S. crude oil, corn and plastics markets," Energy Economics, Elsevier, vol. 52(PA), pages 217-227.
    16. Anthony N. Rezitis & Panagiotis Andrikopoulos & Theodoros Daglis, 2024. "Assessing the asymmetric volatility linkages of energy and agricultural commodity futures during low and high volatility regimes," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(3), pages 451-483, March.
    17. Zhengyi Dong, 2019. "Does the Development of Bioenergy Exacerbate the Price Increase of Maize?," Sustainability, MDPI, vol. 11(18), pages 1-16, September.
    18. Khaled Mokni & Manel Youssef, 2020. "Empirical analysis of the cross‐interdependence between crude oil and agricultural commodity markets," Review of Financial Economics, John Wiley & Sons, vol. 38(4), pages 635-654, October.
    19. Helmut Herwartz & Alberto Saucedo, 2020. "Food–oil volatility spillovers and the impact of distinct biofuel policies on price uncertainties on feedstock markets," Agricultural Economics, International Association of Agricultural Economists, vol. 51(3), pages 387-402, May.
    20. Jiang, Yonghong & Lao, Jiashun & Mo, Bin & Nie, He, 2018. "Dynamic linkages among global oil market, agricultural raw material markets and metal markets: An application of wavelet and copula approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 265-279.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:211:y:2023:i:c:p:361-369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.