IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v206y2023icp784-794.html
   My bibliography  Save this article

Insights into wood species and aging effects on pyrolysis characteristics and combustion model by multi kinetics methods and model constructions

Author

Listed:
  • Liu, Hao
  • Li, Mi
  • Zhao, Shuna
  • Mensah, Rhoda Afriyie
  • Das, Oisik
  • Jiang, Lin
  • Xu, Qiang

Abstract

Considering the extensive application of wood materials in the construction and manufacturing, waste wood has potential of converting into new natural energy sources. In this study, cypress, pine and fir woods commonly used in China, as well as old samples for above each species (more than 200 years old) have been used to study the aging and species effects on their thermal stability and combustion models. To obtain the kinetic triplets of the pyrolysis process, all samples have been heated in a nitrogen atmosphere with heating rates of 5, 10, 15, and 20 K min−1. The kinetics parameters of pyrolysis throughout the conversion process were then calculated using isoconversional method, Coats-Redfern (CR), and masterplots methods. The reconstructed theoretical models have been then adjusted using the accommodation functions. The results of this study contribute to an increased understanding of the fire mechanism of waste woods, and implications concerning to provide scientific theoretical guidance for its feasibility as a new energy fuel more efficiently.

Suggested Citation

  • Liu, Hao & Li, Mi & Zhao, Shuna & Mensah, Rhoda Afriyie & Das, Oisik & Jiang, Lin & Xu, Qiang, 2023. "Insights into wood species and aging effects on pyrolysis characteristics and combustion model by multi kinetics methods and model constructions," Renewable Energy, Elsevier, vol. 206(C), pages 784-794.
  • Handle: RePEc:eee:renene:v:206:y:2023:i:c:p:784-794
    DOI: 10.1016/j.renene.2023.02.108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123002598
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.02.108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao, Ruirui & Yang, Wei & Cong, Xingshun & Dong, Kai & Xu, Jie & Wang, Dengfeng & Yang, Xin, 2020. "Thermogravimetric analysis and reaction kinetics of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 201(C).
    2. Dai, Hongchao & Dai, Huaming, 2022. "Green hydrogen production based on the co-combustion of wood biomass and porous media," Applied Energy, Elsevier, vol. 324(C).
    3. Haddad, Khouloud & Jeguirim, Mejdi & Jellali, Salah & Guizani, Chamseddine & Delmotte, Luc & Bennici, Simona & Limousy, Lionel, 2017. "Combined NMR structural characterization and thermogravimetric analyses for the assessment of the AAEM effect during lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 134(C), pages 10-23.
    4. Li, Mi & Jiang, Lin & He, Jia-Jia & Sun, Jin-Hua, 2019. "Kinetic triplet determination and modified mechanism function construction for thermo-oxidative degradation of waste polyurethane foam using conventional methods and distributed activation energy mode," Energy, Elsevier, vol. 175(C), pages 1-13.
    5. Toscano, G. & Duca, D. & Rossini, G. & Mengarelli, C. & Pizzi, A., 2015. "Identification of different woody biomass for energy purpose by means of Soft Independent Modeling of Class Analogy applied to thermogravimetric analysis," Energy, Elsevier, vol. 83(C), pages 351-357.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Junfang & Liu, Jiaxun & Jiang, Xiumin & Zhang, Hai, 2021. "A two-dimensional distributed activation energy model for pyrolysis of solid fuels," Energy, Elsevier, vol. 230(C).
    2. Huang, Shengxiong & Lei, Can & Qin, Jie & Yi, Cheng & Chen, Tao & Yao, Lingling & Li, Bo & Wen, Yujiao & Zhou, Zhi & Xia, Mao, 2022. "Properties, kinetics and pyrolysis products distribution of oxidative torrefied camellia shell in different oxygen concentration," Energy, Elsevier, vol. 251(C).
    3. Luo, Laipeng & Zhang, Zhiyi & Li, Chong & Nishu, & He, Fang & Zhang, Xingguang & Cai, Junmeng, 2021. "Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 233(C).
    4. Chen, Dengyu & Cen, Kehui & Cao, Xiaobing & Chen, Fan & Zhang, Jie & Zhou, Jianbin, 2021. "Insight into a new phenolic-leaching pretreatment on bamboo pyrolysis: Release characteristics of pyrolytic volatiles, upgradation of three phase products, migration of elements, and energy yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    5. Nzihou, Ange & Stanmore, Brian & Lyczko, Nathalie & Minh, Doan Pham, 2019. "The catalytic effect of inherent and adsorbed metals on the fast/flash pyrolysis of biomass: A review," Energy, Elsevier, vol. 170(C), pages 326-337.
    6. Toledo, Mario & Arriagada, Andrés & Ripoll, Nicolás & Salgansky, Eugene A. & Mujeebu, Muhammad Abdul, 2023. "Hydrogen and syngas production by hybrid filtration combustion: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    7. Gao, Qi & Ni, Liangmeng & He, Yuyu & Hou, Yanmei & Hu, Wanhe & Liu, Zhijia, 2022. "Effect of hydrothermal pretreatment on deashing and pyrolysis characteristics of bamboo shoot shells," Energy, Elsevier, vol. 247(C).
    8. Prabhakaran, SP Sathiya & Swaminathan, Ganapathiraman & Joshi, Viraj V., 2022. "Combustion and pyrolysis kinetics of Australian lignite coal and validation by artificial neural networks," Energy, Elsevier, vol. 242(C).
    9. João Silva & Senhorinha Teixeira & José Teixeira, 2023. "A Review of Biomass Thermal Analysis, Kinetics and Product Distribution for Combustion Modeling: From the Micro to Macro Perspective," Energies, MDPI, vol. 16(18), pages 1-23, September.
    10. Besma Khiari & Mejdi Jeguirim, 2018. "Pyrolysis of Grape Marc from Tunisian Wine Industry: Feedstock Characterization, Thermal Degradation and Kinetic Analysis," Energies, MDPI, vol. 11(4), pages 1-14, March.
    11. Julia Karaeva & Svetlana Timofeeva & Marat Gilfanov & Marina Slobozhaninova & Olga Sidorkina & Ekaterina Luchkina & Vladimir Panchenko & Vadim Bolshev, 2023. "Exploring the Prospective of Weed Amaranthus retroflexus for Biofuel Production through Pyrolysis," Agriculture, MDPI, vol. 13(3), pages 1-19, March.
    12. Khan, Shoaib Raza & Zeeshan, Muhammad, 2022. "Catalytic potential of low-cost natural zeolite and influence of various pretreatments of biomass on pyro-oil up-gradation during co-pyrolysis with scrap rubber tires," Energy, Elsevier, vol. 238(PB).
    13. Samar Hadroug & Salah Jellali & Mejdi Jeguirim & Marzena Kwapinska & Helmi Hamdi & James J. Leahy & Witold Kwapinski, 2021. "Static and Dynamic Investigations on Leaching/Retention of Nutrients from Raw Poultry Manure Biochars and Amended Agricultural Soil," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    14. Zhu, Haodong & Yi, Baojun & Hu, Hongyun & Fan, Qizhou & Wang, Hao & Yao, Hong, 2021. "The effects of char and potassium on the fast pyrolysis behaviors of biomass in an infrared-heating condition," Energy, Elsevier, vol. 214(C).
    15. He, Qing & Gong, Yan & Ding, Lu & Guo, Qinghua & Yoshikawa, Kunio & Yu, Guangsuo, 2021. "Reactivity prediction and mechanism analysis of raw and demineralized coal char gasification," Energy, Elsevier, vol. 229(C).
    16. Fonseca, Frederico G. & Soares Dias, Ana P., 2021. "Almond shells: Catalytic fixed-bed pyrolysis and volatilization kinetics," Renewable Energy, Elsevier, vol. 180(C), pages 1380-1390.
    17. Ding, Yanming & Huang, Biqing & Wu, Chuanbao & He, Qize & Lu, Kaihua, 2019. "Kinetic model and parameters study of lignocellulosic biomass oxidative pyrolysis," Energy, Elsevier, vol. 181(C), pages 11-17.
    18. Mohd Safaai, Nor Sharliza & Pang, Shusheng, 2021. "Pyrolysis kinetics of chemically treated and torrefied radiata pine identified through thermogravimetric analysis," Renewable Energy, Elsevier, vol. 175(C), pages 200-213.
    19. Han, Lanfang & Sun, Haoran & Sun, Ke & Yang, Yan & Fang, Liping & Xing, Baoshan, 2021. "Effect of Fe and Al ions on the production of biochar from agricultural biomass: Properties, stability and adsorption efficiency of biochar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    20. Dai, Huaming & Song, Ziwei & Wang, Hongting & Cui, Qingyuan, 2023. "Efficient production of hydrogen by catalytic decomposition of methane with Fe-substituted hexaaluminate coated packed bed," Energy, Elsevier, vol. 273(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:206:y:2023:i:c:p:784-794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.