IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v230y2021ics0360544221011087.html
   My bibliography  Save this article

A two-dimensional distributed activation energy model for pyrolysis of solid fuels

Author

Listed:
  • Ma, Junfang
  • Liu, Jiaxun
  • Jiang, Xiumin
  • Zhang, Hai

Abstract

Pyrolysis kinetic models are pivotal for understanding and optimizing the gasification, distillation, and combustion processes. This paper proposes a novel two-dimensional distributed activation energy model (2D-DAEM), which is achieved via extending the classical DAEM to the 2D plane of activation energy E and pre-exponential factor A. The performance of the proposed model was evaluated based upon comprehensive analyses of complex reactions such as co-pyrolysis. The results show that the 2D-DAEM outperforms the classical DAEM in terms of efficiency and accuracy. Specifically, the co-pyrolysis analysis of pine woodchips (PINE) and polyethylene terephthalate (PET), shows that the classical DAEM tends to underestimate the lnA values (i.e., 43.0 for PINE pyrolysis; 42.0 for PET pyrolysis; but 39.2 for PINE&PET co-pyrolysis), while the lnA value of 2D-DAEM (about 43.0 for all) is more reasonable. Additionally, the 2D-DAEM is employed to study the influence of coal particle size on pyrolysis. It is observed that the 25 μm coal has the highest reaction rate under both 500 K and 1500 K iso-thermal processes. As a more normative, reasonable, and accurate model, the proposed 2D-DAEM is bound to enhance the practice of reaction prediction, material analysis, and process design.

Suggested Citation

  • Ma, Junfang & Liu, Jiaxun & Jiang, Xiumin & Zhang, Hai, 2021. "A two-dimensional distributed activation energy model for pyrolysis of solid fuels," Energy, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:energy:v:230:y:2021:i:c:s0360544221011087
    DOI: 10.1016/j.energy.2021.120860
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221011087
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120860?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brillard, A. & Brilhac, J.F., 2020. "Improvements of global models for the determination of the kinetic parameters associated to the thermal degradation of lignocellulosic materials under low heating rates," Renewable Energy, Elsevier, vol. 146(C), pages 1498-1509.
    2. Navarro, M.V. & López, J.M. & Veses, A. & Callén, M.S. & García, T., 2018. "Kinetic study for the co-pyrolysis of lignocellulosic biomass and plastics using the distributed activation energy model," Energy, Elsevier, vol. 165(PA), pages 731-742.
    3. Fang, Shiwen & Lin, Yousheng & Lin, Yan & Chen, Shu & Shen, Xiangyang & Zhong, Tianming & Ding, Lixing & Ma, Xiaoqian, 2020. "Influence of ultrasonic pretreatment on the co-pyrolysis characteristics and kinetic parameters of municipal solid waste and paper mill sludge," Energy, Elsevier, vol. 190(C).
    4. Xiao, Ruirui & Yang, Wei & Cong, Xingshun & Dong, Kai & Xu, Jie & Wang, Dengfeng & Yang, Xin, 2020. "Thermogravimetric analysis and reaction kinetics of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 201(C).
    5. Zadravec, Tomas & Yin, Chungen & Kokalj, Filip & Samec, Niko & Rajh, Boštjan, 2020. "The impacts of different profiles of the grate inlet conditions on freeboard CFD in a waste wood-fired grate boiler," Applied Energy, Elsevier, vol. 268(C).
    6. Duan, Wenjun & Yu, Qingbo & Xie, Huaqing & Qin, Qin, 2017. "Pyrolysis of coal by solid heat carrier-experimental study and kinetic modeling," Energy, Elsevier, vol. 135(C), pages 317-326.
    7. Wu, Junnan & Liao, Yanfen & Lin, Yan & Tian, Yunlong & Ma, Xiaoqian, 2019. "Study on thermal decomposition kinetics model of sewage sludge and wheat based on multi distributed activation energy," Energy, Elsevier, vol. 185(C), pages 795-803.
    8. Li, Mi & Jiang, Lin & He, Jia-Jia & Sun, Jin-Hua, 2019. "Kinetic triplet determination and modified mechanism function construction for thermo-oxidative degradation of waste polyurethane foam using conventional methods and distributed activation energy mode," Energy, Elsevier, vol. 175(C), pages 1-13.
    9. Zhang, Zhiping & Tahir, Nadeem & Li, Yameng & Zhang, Tian & Zhu, Shengnan & Zhang, Quanguo, 2019. "Tailoring of structural and optical parameters of corncobs through ball milling pretreatment," Renewable Energy, Elsevier, vol. 141(C), pages 298-304.
    10. Cai, Junmeng & Wu, Weixuan & Liu, Ronghou, 2014. "An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 236-246.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liangliang Wang & Jiexiang Wang & Wanfen Pu & Tengfei Wang, 2021. "Combustion Behavior and Kinetics Analysis of Isothermal Oxidized Oils from Fengcheng Extra-Heavy Oil," Energies, MDPI, vol. 14(19), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdullahi Shagali, Abdulmajid & Hu, Song & Li, Hanjian & He, Limo & Han, Hengda & Chi, Huanying & Qing, Haoran & Xu, Jun & Jiang, Long & Wang, Yi & Su, Sheng & Xiang, Jun, 2023. "Synergistic interactions and co-pyrolysis characteristics of lignocellulosic biomass components and plastic using a fast heating concentrating photothermal TGA system," Renewable Energy, Elsevier, vol. 215(C).
    2. Ding, Yanming & Huang, Biqing & Wu, Chuanbao & He, Qize & Lu, Kaihua, 2019. "Kinetic model and parameters study of lignocellulosic biomass oxidative pyrolysis," Energy, Elsevier, vol. 181(C), pages 11-17.
    3. Liu, Hao & Li, Mi & Zhao, Shuna & Mensah, Rhoda Afriyie & Das, Oisik & Jiang, Lin & Xu, Qiang, 2023. "Insights into wood species and aging effects on pyrolysis characteristics and combustion model by multi kinetics methods and model constructions," Renewable Energy, Elsevier, vol. 206(C), pages 784-794.
    4. Yang, Wei & Wang, Yihan & Yan, Fazhi & Si, Guangyao & Lin, Baiquan, 2022. "Evolution characteristics of coal microstructure and its influence on methane adsorption capacity under high temperature pyrolysis," Energy, Elsevier, vol. 254(PA).
    5. Yang, Yantao & Qu, Xia & Huang, Guorun & Ren, Suxia & Dong, Lili & Sun, Tanglei & Liu, Peng & Li, Yanling & Lei, Tingzhou & Cai, Junmeng, 2023. "Insight into lignocellulosic biomass torrefaction kinetics with case study of pinewood sawdust torrefaction," Renewable Energy, Elsevier, vol. 215(C).
    6. José Juan Alvarado Flores & Jorge Víctor Alcaraz Vera & María Liliana Ávalos Rodríguez & Luis Bernardo López Sosa & José Guadalupe Rutiaga Quiñones & Luís Fernando Pintor Ibarra & Francisco Márquez Mo, 2022. "Analysis of Pyrolysis Kinetic Parameters Based on Various Mathematical Models for More than Twenty Different Biomasses: A Review," Energies, MDPI, vol. 15(18), pages 1-19, September.
    7. Huang, Shengxiong & Lei, Can & Qin, Jie & Yi, Cheng & Chen, Tao & Yao, Lingling & Li, Bo & Wen, Yujiao & Zhou, Zhi & Xia, Mao, 2022. "Properties, kinetics and pyrolysis products distribution of oxidative torrefied camellia shell in different oxygen concentration," Energy, Elsevier, vol. 251(C).
    8. Gao, Zihe & Wan, Huaxian & Ji, Jie & Bi, Yubo, 2019. "Experimental prediction on the performance and propagation of ceiling jets under the influence of wall confinement," Energy, Elsevier, vol. 178(C), pages 378-385.
    9. Zhao, Jingyu & Deng, Jun & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidatio," Energy, Elsevier, vol. 169(C), pages 587-596.
    10. Luo, Laipeng & Zhang, Zhiyi & Li, Chong & Nishu, & He, Fang & Zhang, Xingguang & Cai, Junmeng, 2021. "Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 233(C).
    11. Niu, Miaomiao & Sun, Rongyue & Ding, Kuan & Gu, Haiming & Cui, Xiaobo & Wang, Liang & Hu, Jichu, 2022. "Synergistic effect on thermal behavior and product characteristics during co-pyrolysis of biomass and waste tire: Influence of biomass species and waste blending ratios," Energy, Elsevier, vol. 240(C).
    12. Wen, Yuming & Zaini, Ilman Nuran & Wang, Shule & Mu, Wangzhong & Jönsson, Pär Göran & Yang, Weihong, 2021. "Synergistic effect of the co-pyrolysis of cardboard and polyethylene: A kinetic and thermodynamic study," Energy, Elsevier, vol. 229(C).
    13. Zhang, Juan & Sun, Lulu & Zhang, Jiaqing & Ding, Yanming & Chen, Wenlu & Zhong, Yu, 2021. "Kinetic parameters estimation and reaction model modification for thermal degradation of Beizao oil shale based on thermogravimetric analysis coupled with deconvolution procedure," Energy, Elsevier, vol. 229(C).
    14. Haorui Zhang & Jiaolin Li & Quanguo Zhang & Shengnan Zhu & Shuai Yang & Zhiping Zhang, 2020. "Effect of Substrate Concentration on Photo-Fermentation Bio-Hydrogen Production Process from Starch-Rich Agricultural Leftovers under Oscillation," Sustainability, MDPI, vol. 12(7), pages 1-8, March.
    15. Chen, Jianbiao & Gao, Shuaifei & Xu, Fang & Xu, Wenhao & Yang, Yuanjiang & Kong, Depeng & Wang, Yinfeng & Yao, Huicong & Chen, Haijun & Zhu, Yuezhao & Mu, Lin, 2022. "Influence of moisture and feedstock form on the pyrolysis behaviors, pyrolytic gas production, and residues micro-structure evolutions of an industrial sludge from a steel production enterprise," Energy, Elsevier, vol. 248(C).
    16. Feng, Yipeng & Qiu, Keying & Zhang, Zhiping & Li, Chong & Rahman, Md. Maksudur & Cai, Junmeng, 2022. "Distributed activation energy model for lignocellulosic biomass torrefaction kinetics with combined heating program," Energy, Elsevier, vol. 239(PC).
    17. Li, Chao & Sun, Yifan & Yi, Zijun & Zhang, Lijun & Zhang, Shu & Hu, Xun, 2022. "Co-pyrolysis of coke bottle wastes with cellulose, lignin and sawdust: Impacts of the mixed feedstock on char properties," Renewable Energy, Elsevier, vol. 181(C), pages 1126-1139.
    18. Liu, Jiazheng & Zhong, Fei & Niu, Wenjuan & Su, Jing & Gao, Ziqi & Zhang, Kai, 2019. "Effects of heating rate and gas atmosphere on the pyrolysis and combustion characteristics of different crop residues and the kinetics analysis," Energy, Elsevier, vol. 175(C), pages 320-332.
    19. Alphonse Kayiranga & Baozhang Chen & Fei Wang & Winny Nthangeni & Adil Dilawar & Yves Hategekimana & Huifang Zhang & Lifeng Guo, 2022. "Spatiotemporal Variation in Gross Primary Productivity and Their Responses to Climate in the Great Lakes Region of Sub-Saharan Africa during 2001–2020," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    20. Kadier, Abudukeremu & Kalil, Mohd Sahaid & Abdeshahian, Peyman & Chandrasekhar, K. & Mohamed, Azah & Azman, Nadia Farhana & Logroño, Washington & Simayi, Yibadatihan & Hamid, Aidil Abdul, 2016. "Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 501-525.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:230:y:2021:i:c:s0360544221011087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.