IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v175y2021icp200-213.html
   My bibliography  Save this article

Pyrolysis kinetics of chemically treated and torrefied radiata pine identified through thermogravimetric analysis

Author

Listed:
  • Mohd Safaai, Nor Sharliza
  • Pang, Shusheng

Abstract

This study investigates the effects of separate and combined chemical (acid and alkaline pretreatment) and torrefaction pretreatment of radiata pine biomass on the pyrolysis kinetic parameters using thermogravimetric analysis (TGA). Thermal degradation profiles of the treated biomass samples were examined and correlated to changes in proximate and ultimate analyses. The TGA results were then used to determine the activation energies (Ea) and pre-exponential factors (A) in various kinetic models, including Kissinger, Kissinger-Akahira-Sunose (KAS), Flynn-Wall-Ozawa (FWO), and simplified Distributed Activation Energy Model (DAEM) methods, where the obtained values of Ea for these models ranged between 170.9 and 270.9 kJ mol−1, 170.1–262.3 kJ mol−1, 186.2–259.2 kJ mol−1, and 169.3–266.3 kJ mol−1, respectively, for all of the treated biomass samples. The mean Ea values after pretreatments increased in comparison with that of the Control sample. In general, the Ea values increased over the degree of conversion from 0.2 to 0.8 attributed to the crystallinity and carbonisation effects upon pretreatments. However, the mean Ea values varied with the pretreatment methods, indicating a complex multi-step mechanism of pyrolysis process of the treated biomass. The A values determined for all of the treated biomass samples varied over a broad magnitude ranging from 105 to 1026 s−1 for the adopted kinetic models.

Suggested Citation

  • Mohd Safaai, Nor Sharliza & Pang, Shusheng, 2021. "Pyrolysis kinetics of chemically treated and torrefied radiata pine identified through thermogravimetric analysis," Renewable Energy, Elsevier, vol. 175(C), pages 200-213.
  • Handle: RePEc:eee:renene:v:175:y:2021:i:c:p:200-213
    DOI: 10.1016/j.renene.2021.04.117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121006376
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.04.117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Javed, Muhammad Amir, 2020. "Acid treatment effecting the physiochemical structure and thermal degradation of biomass," Renewable Energy, Elsevier, vol. 159(C), pages 444-450.
    2. Xiao, Ruirui & Yang, Wei & Cong, Xingshun & Dong, Kai & Xu, Jie & Wang, Dengfeng & Yang, Xin, 2020. "Thermogravimetric analysis and reaction kinetics of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 201(C).
    3. Rego, Filipe & Soares Dias, Ana P. & Casquilho, Miguel & Rosa, Fátima C. & Rodrigues, Abel, 2020. "Pyrolysis kinetics of short rotation coppice poplar biomass," Energy, Elsevier, vol. 207(C).
    4. Zhang, Jun & Gu, Jing & Yuan, Haoran & Chen, Yong, 2020. "Thermal behaviors and kinetics for fast pyrolysis of chemical pretreated waste cassava residues," Energy, Elsevier, vol. 208(C).
    5. Zhang, Shuping & Su, Yinhai & Xu, Dan & Zhu, Shuguang & Zhang, Houlei & Liu, Xinzhi, 2018. "Effects of torrefaction and organic-acid leaching pretreatment on the pyrolysis behavior of rice husk," Energy, Elsevier, vol. 149(C), pages 804-813.
    6. Wigley, Tansy & Yip, Alex C.K. & Pang, Shusheng, 2016. "Pretreating biomass via demineralisation and torrefaction to improve the quality of crude pyrolysis oil," Energy, Elsevier, vol. 109(C), pages 481-494.
    7. Kan, Tao & Strezov, Vladimir & Evans, Tim J., 2016. "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1126-1140.
    8. Hemansi, & Gupta, Rishi & Aswal, Vinod K. & Saini, Jitendra Kumar, 2020. "Sequential dilute acid and alkali deconstruction of sugarcane bagasse for improved hydrolysis: Insight from small angle neutron scattering (SANS)," Renewable Energy, Elsevier, vol. 147(P1), pages 2091-2101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Yuhao & Liu, Yanxing & Li, Zhengyuan & Zong, Peiying & Hou, Jiachen & Zhang, Qiyan & Gou, Xiang, 2022. "Synergistic effect, kinetics, and pollutant emission characteristics of co-combustion of polymer-containing oily sludge and cornstalk using TGA and fixed-bed reactor," Renewable Energy, Elsevier, vol. 185(C), pages 748-758.
    2. Tariq, Rumaisa & Mohd Zaifullizan, Yasmin & Salema, Arshad Adam & Abdulatif, Atiqah & Ken, Loke Shun, 2022. "Co-pyrolysis and co-combustion of orange peel and biomass blends: Kinetics, thermodynamic, and ANN application," Renewable Energy, Elsevier, vol. 198(C), pages 399-414.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, R. & Strezov, V. & Weldekidan, H. & He, J. & Singh, S. & Kan, T. & Dastjerdi, B., 2020. "Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    2. Huan Li & Huawei Mou & Nan Zhao & Yaohong Yu & Quan Hong & Mperejekumana Philbert & Yuguang Zhou & Hossein Beidaghy Dizaji & Renjie Dong, 2021. "Nitrogen Migration during Pyrolysis of Raw and Acid Leached Maize Straw," Sustainability, MDPI, vol. 13(7), pages 1-15, March.
    3. Gao, Qi & Ni, Liangmeng & He, Yuyu & Hou, Yanmei & Hu, Wanhe & Liu, Zhijia, 2022. "Effect of hydrothermal pretreatment on deashing and pyrolysis characteristics of bamboo shoot shells," Energy, Elsevier, vol. 247(C).
    4. Zhou, Qiaoqiao & Liu, Zhenyu & Wu, Ta Yeong & Zhang, Lian, 2023. "Furfural from pyrolysis of agroforestry waste: Critical factors for utilisation of C5 and C6 sugars," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    5. Javier Fermoso & Patricia Pizarro & Juan M. Coronado & David P. Serrano, 2017. "Advanced biofuels production by upgrading of pyrolysis bio‐oil," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(4), July.
    6. Rijo, Bruna & Soares Dias, Ana Paula & Ramos, Marta & de Jesus, Nicole & Puna, Jaime, 2021. "Catalyzed pyrolysis of coffee and tea wastes," Energy, Elsevier, vol. 235(C).
    7. Dai, Leilei & Wang, Yunpu & Liu, Yuhuan & Ruan, Roger & He, Chao & Yu, Zhenting & Jiang, Lin & Zeng, Zihong & Tian, Xiaojie, 2019. "Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 20-36.
    8. JoungDu Shin & SangWon Park & Changyoon Jeong, 2020. "Assessment of Agro-Environmental Impacts for Supplemented Methods to Biochar Manure Pellets during Rice ( Oryza sativa L.) Cultivation," Energies, MDPI, vol. 13(8), pages 1-14, April.
    9. Huang, Shengxiong & Lei, Can & Qin, Jie & Yi, Cheng & Chen, Tao & Yao, Lingling & Li, Bo & Wen, Yujiao & Zhou, Zhi & Xia, Mao, 2022. "Properties, kinetics and pyrolysis products distribution of oxidative torrefied camellia shell in different oxygen concentration," Energy, Elsevier, vol. 251(C).
    10. Wang, Chu & Yuan, Xinhua & Li, Shanshan & Zhu, Xifeng, 2021. "Enrichment of phenolic products in walnut shell pyrolysis bio-oil by combining torrefaction pretreatment with fractional condensation," Renewable Energy, Elsevier, vol. 169(C), pages 1317-1329.
    11. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Javed, Muhammad Amir, 2020. "Acid treatment effecting the physiochemical structure and thermal degradation of biomass," Renewable Energy, Elsevier, vol. 159(C), pages 444-450.
    13. Barta-Rajnai, E. & Wang, L. & Sebestyén, Z. & Barta, Z. & Khalil, R. & Skreiberg, Ø. & Grønli, M. & Jakab, E. & Czégény, Z., 2017. "Comparative study on the thermal behavior of untreated and various torrefied bark, stem wood, and stump of Norway spruce," Applied Energy, Elsevier, vol. 204(C), pages 1043-1054.
    14. Cataldo De Blasio & Gabriel Salierno & Andrea Magnano, 2021. "Implications on Feedstock Processing and Safety Issues for Semi-Batch Operations in Supercritical Water Gasification of Biomass," Energies, MDPI, vol. 14(10), pages 1-19, May.
    15. Farhad Beik & Leon Williams & Tim Brown & Stuart T. Wagland, 2021. "Managing Non-Sewered Human Waste Using Thermochemical Waste Treatment Technologies: A Review," Energies, MDPI, vol. 14(22), pages 1-22, November.
    16. Ansari, Khursheed B. & Gaikar, Vilas G., 2019. "Investigating production of hydrocarbon rich bio-oil from grassy biomass using vacuum pyrolysis coupled with online deoxygenation of volatile products over metallic iron," Renewable Energy, Elsevier, vol. 130(C), pages 305-318.
    17. Syed-Hassan, Syed Shatir A. & Wang, Yi & Hu, Song & Su, Sheng & Xiang, Jun, 2017. "Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 888-913.
    18. Juan Luis Aguirre & Juan Baena & María Teresa Martín & Leonor Nozal & Sergio González & José Luis Manjón & Manuel Peinado, 2020. "Composition, Ageing and Herbicidal Properties of Wood Vinegar Obtained through Fast Biomass Pyrolysis," Energies, MDPI, vol. 13(10), pages 1-17, May.
    19. Theppitak, Sarut & Hungwe, Douglas & Ding, Lu & Xin, Dai & Yu, Guangsuo & Yoshikawa, Kunio, 2020. "Comparison on solid biofuel production from wet and dry carbonization processes of food wastes," Applied Energy, Elsevier, vol. 272(C).
    20. Chen, Dengyu & Cen, Kehui & Cao, Xiaobing & Chen, Fan & Zhang, Jie & Zhou, Jianbin, 2021. "Insight into a new phenolic-leaching pretreatment on bamboo pyrolysis: Release characteristics of pyrolytic volatiles, upgradation of three phase products, migration of elements, and energy yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:175:y:2021:i:c:p:200-213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.