IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i3p1212-d486161.html
   My bibliography  Save this article

Static and Dynamic Investigations on Leaching/Retention of Nutrients from Raw Poultry Manure Biochars and Amended Agricultural Soil

Author

Listed:
  • Samar Hadroug

    (Wastewater and Environment Laboratory, Water Research and Technology Center, P.O. Box 273, Soliman 8020, Tunisia
    National Agricultural Institute of Tunisia, University of Carthage, Tunis 1082, Tunisia)

  • Salah Jellali

    (PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman)

  • Mejdi Jeguirim

    (The Institute of Materials Science of Mulhouse (IS2M), University of Haute Alsace, University of Strasbourg, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France)

  • Marzena Kwapinska

    (Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland)

  • Helmi Hamdi

    (Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar)

  • James J. Leahy

    (Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland)

  • Witold Kwapinski

    (Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland)

Abstract

In this study, nutrients release/adsorption from/by raw poultry manure-derived biochar produced at a pyrolysis temperature of 600 °C (RPM-B) was assessed under static and dynamic conditions. Batch sequential leaching experiments of RPM-B for a total contact time of 10 days showed that both phosphorus and potassium were slowly released but with higher amounts compared to various other animal- and lignocellulosic-derived biochars. The cumulated released P and K amounts were assessed to 93.6 and 17.1 mg g −1 , which represent about 95% and 43% of their original contents in the RPM-B, respectively. The column combined leaching/adsorption experiments showed that amending an alkaline sandy agricultural soil with two doses of RPM-B (at 5% and 8% w:w) resulted in an efficient retention of NO 3 -N and NH 4 -N, and on the contrary, important leached amounts of PO 4 -P, K + , Mg 2+ , and Ca 2+ but with relatively slow kinetic release rates for a long period. Even after 40 days of dynamic leaching, these latter nutrients continued to be released with kinetic rates lower than 10 mg kg −1 d −1 . Thus, compared to synthetic fertilizers, RPM-B valorization as organic amendment for poor semiarid soils could be considered as an attractive, eco-friendly, and sustainable waste recycling option.

Suggested Citation

  • Samar Hadroug & Salah Jellali & Mejdi Jeguirim & Marzena Kwapinska & Helmi Hamdi & James J. Leahy & Witold Kwapinski, 2021. "Static and Dynamic Investigations on Leaching/Retention of Nutrients from Raw Poultry Manure Biochars and Amended Agricultural Soil," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1212-:d:486161
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/3/1212/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/3/1212/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Johannes Lehmann & John Gaunt & Marco Rondon, 2006. "Bio-char Sequestration in Terrestrial Ecosystems – A Review," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(2), pages 395-419, March.
    2. Zakaria M. Solaiman & Muhammad Izhar Shafi & Euan Beamont & Hossain M. Anawar, 2020. "Poultry Litter Biochar Increases Mycorrhizal Colonisation, Soil Fertility and Cucumber Yield in a Fertigation System on Sandy Soil," Agriculture, MDPI, vol. 10(10), pages 1-14, October.
    3. Daya Shankar Pandey & Giannis Katsaros & Christian Lindfors & James J. Leahy & Savvas A. Tassou, 2019. "Fast Pyrolysis of Poultry Litter in a Bubbling Fluidised Bed Reactor: Energy and Nutrient Recovery," Sustainability, MDPI, vol. 11(9), pages 1-17, May.
    4. Ibn Ferjani, A. & Jeguirim, M. & Jellali, S. & Limousy, L. & Courson, C. & Akrout, H. & Thevenin, N. & Ruidavets, L. & Muller, A. & Bennici, S., 2019. "The use of exhausted grape marc to produce biofuels and biofertilizers: Effect of pyrolysis temperatures on biochars properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 425-433.
    5. Haddad, Khouloud & Jeguirim, Mejdi & Jellali, Salah & Guizani, Chamseddine & Delmotte, Luc & Bennici, Simona & Limousy, Lionel, 2017. "Combined NMR structural characterization and thermogravimetric analyses for the assessment of the AAEM effect during lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 134(C), pages 10-23.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonis A. Zorpas & Maria K. Doula & Mejdi Jeguirim, 2021. "Waste Strategies Development in the Framework of Circular Economy," Sustainability, MDPI, vol. 13(23), pages 1-5, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaming Zhao & Xiangjun Wang & Guangwei Yao & Zhizhong Lin & Laiyuan Xu & Yunli Jiang & Zewen Jin & Shengdao Shan & Lifeng Ping, 2022. "Advances in the Effects of Biochar on Microbial Ecological Function in Soil and Crop Quality," Sustainability, MDPI, vol. 14(16), pages 1-11, August.
    2. Han, Lanfang & Sun, Haoran & Sun, Ke & Yang, Yan & Fang, Liping & Xing, Baoshan, 2021. "Effect of Fe and Al ions on the production of biochar from agricultural biomass: Properties, stability and adsorption efficiency of biochar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Mehnaz Mosharrof & Md. Kamal Uddin & Shamshuddin Jusop & Muhammad Firdaus Sulaiman & S. M. Shamsuzzaman & Ahmad Numery Ashfaqul Haque, 2021. "Changes in Acidic Soil Chemical Properties and Carbon Dioxide Emission Due to Biochar and Lime Treatments," Agriculture, MDPI, vol. 11(3), pages 1-20, March.
    4. Ibn Ferjani, A. & Jeguirim, M. & Jellali, S. & Limousy, L. & Courson, C. & Akrout, H. & Thevenin, N. & Ruidavets, L. & Muller, A. & Bennici, S., 2019. "The use of exhausted grape marc to produce biofuels and biofertilizers: Effect of pyrolysis temperatures on biochars properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 425-433.
    5. Lizhen Qin & Donghoon Shin, 2023. "Effects of UV Light Treatment on Functional Group and Its Adsorption Capacity of Biochar," Energies, MDPI, vol. 16(14), pages 1-14, July.
    6. Lenka Botyanszká & Justína Vitková & Natália Botková & Lucia Toková & Ján Gaduš, 2024. "The effects of biochar grain size on radish plants under low water availability," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(4), pages 203-209.
    7. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    8. Reijnders, L., 2009. "Are forestation, bio-char and landfilled biomass adequate offsets for the climate effects of burning fossil fuels?," Energy Policy, Elsevier, vol. 37(8), pages 2839-2841, August.
    9. Kung, Chih-Chun & McCarl, Bruce A. & Cao, Xiaoyong, 2013. "Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan," Energy Policy, Elsevier, vol. 60(C), pages 317-323.
    10. Adam O’Toole & Christophe Moni & Simon Weldon & Anne Schols & Monique Carnol & Bernard Bosman & Daniel P. Rasse, 2018. "Miscanthus Biochar had Limited Effects on Soil Physical Properties, Microbial Biomass, and Grain Yield in a Four-Year Field Experiment in Norway," Agriculture, MDPI, vol. 8(11), pages 1-19, October.
    11. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    12. Subhan Danish & Muhammad Zafar-ul-Hye & Shah Fahad & Shah Saud & Martin Brtnicky & Tereza Hammerschmiedt & Rahul Datta, 2020. "Drought Stress Alleviation by ACC Deaminase Producing Achromobacter xylosoxidans and Enterobacter cloacae , with and without Timber Waste Biochar in Maize," Sustainability, MDPI, vol. 12(15), pages 1-17, August.
    13. Zouhair Elkhlifi & Jerosha Iftikhar & Mohammad Sarraf & Baber Ali & Muhammad Hamzah Saleem & Irshad Ibranshahib & Mozart Daltro Bispo & Lucas Meili & Sezai Ercisli & Ehlinaz Torun Kayabasi & Naser Ale, 2023. "Potential Role of Biochar on Capturing Soil Nutrients, Carbon Sequestration and Managing Environmental Challenges: A Review," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    14. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    15. Farrelly, Damien J. & Everard, Colm D. & Fagan, Colette C. & McDonnell, Kevin P., 2013. "Carbon sequestration and the role of biological carbon mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 712-727.
    16. Eugene Balashov & Natalya Buchkina & Vladimír Šimanský & Ján Horák, 2022. "Effects of Slow Pyrolysis Biochar on CO 2 Emissions from Two Soils under Anaerobic Conditions," Agriculture, MDPI, vol. 12(7), pages 1-12, July.
    17. Mathews, John A., 2008. "Carbon-negative biofuels," Energy Policy, Elsevier, vol. 36(3), pages 940-945, March.
    18. Amutio, M. & Lopez, G. & Artetxe, M. & Elordi, G. & Olazar, M. & Bilbao, J., 2012. "Influence of temperature on biomass pyrolysis in a conical spouted bed reactor," Resources, Conservation & Recycling, Elsevier, vol. 59(C), pages 23-31.
    19. Isabel Teichmann, 2015. "An Economic Assessment of Soil Carbon Sequestration with Biochar in Germany," Discussion Papers of DIW Berlin 1476, DIW Berlin, German Institute for Economic Research.
    20. Chen, Dengyu & Cen, Kehui & Cao, Xiaobing & Chen, Fan & Zhang, Jie & Zhou, Jianbin, 2021. "Insight into a new phenolic-leaching pretreatment on bamboo pyrolysis: Release characteristics of pyrolytic volatiles, upgradation of three phase products, migration of elements, and energy yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1212-:d:486161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.