IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v157y2020icp1185-1202.html
   My bibliography  Save this article

Simulation-based design optimization of houses with low grid dependency

Author

Listed:
  • Mohammadi, Zahra
  • Hoes, Pieter Jan
  • Hensen, Jan L.M.

Abstract

There is a significant growth in the utilization of renewable energy in the built environment. Due to the intermittent nature of most renewable energy sources, energy mismatch problems between on-site generation and demand both in hourly and seasonal levels is unavoidable. In addition, energy-pricing policies are leading to less or no Photovoltaic (PV) feed-in-tariffs in the near future and/or even providing incentives to uphold self-consumption. Therefore, it is essential to enhance the building designs in a way to improve the utilization of on-site generated energy and to decrease the dependency on the nearby energy grid.

Suggested Citation

  • Mohammadi, Zahra & Hoes, Pieter Jan & Hensen, Jan L.M., 2020. "Simulation-based design optimization of houses with low grid dependency," Renewable Energy, Elsevier, vol. 157(C), pages 1185-1202.
  • Handle: RePEc:eee:renene:v:157:y:2020:i:c:p:1185-1202
    DOI: 10.1016/j.renene.2020.04.157
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120306959
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.04.157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Clastres, C. & Ha Pham, T.T. & Wurtz, F. & Bacha, S., 2010. "Ancillary services and optimal household energy management with photovoltaic production," Energy, Elsevier, vol. 35(1), pages 55-64.
    2. Lopes, Rui Amaral & Martins, João & Aelenei, Daniel & Lima, Celson Pantoja, 2016. "A cooperative net zero energy community to improve load matching," Renewable Energy, Elsevier, vol. 93(C), pages 1-13.
    3. Hirvonen, Janne & Kayo, Genku & Cao, Sunliang & Hasan, Ala & Sirén, Kai, 2015. "Renewable energy production support schemes for residential-scale solar photovoltaic systems in Nordic conditions," Energy Policy, Elsevier, vol. 79(C), pages 72-86.
    4. Milo, Aitor & Gaztañaga, Haizea & Etxeberria-Otadui, Ion & Bacha, Seddik & Rodríguez, Pedro, 2011. "Optimal economic exploitation of hydrogen based grid-friendly zero energy buildings," Renewable Energy, Elsevier, vol. 36(1), pages 197-205.
    5. Narayanan, Arun & Mets, Kevin & Strobbe, Matthias & Develder, Chris, 2019. "Feasibility of 100% renewable energy-based electricity production for cities with storage and flexibility," Renewable Energy, Elsevier, vol. 134(C), pages 698-709.
    6. Kotireddy, Rajesh & Hoes, Pieter-Jan & Hensen, Jan L.M., 2018. "A methodology for performance robustness assessment of low-energy buildings using scenario analysis," Applied Energy, Elsevier, vol. 212(C), pages 428-442.
    7. Robert L. Fares & Michael E. Webber, 2017. "The impacts of storing solar energy in the home to reduce reliance on the utility," Nature Energy, Nature, vol. 2(2), pages 1-10, February.
    8. Wright, Andrew & Firth, Steven, 2007. "The nature of domestic electricity-loads and effects of time averaging on statistics and on-site generation calculations," Applied Energy, Elsevier, vol. 84(4), pages 389-403, April.
    9. Paatero, Jukka V. & Lund, Peter D., 2007. "Effects of large-scale photovoltaic power integration on electricity distribution networks," Renewable Energy, Elsevier, vol. 32(2), pages 216-234.
    10. Salom, Jaume & Marszal, Anna Joanna & Widén, Joakim & Candanedo, José & Lindberg, Karen Byskov, 2014. "Analysis of load match and grid interaction indicators in net zero energy buildings with simulated and monitored data," Applied Energy, Elsevier, vol. 136(C), pages 119-131.
    11. Hoevenaars, Eric J. & Crawford, Curran A., 2012. "Implications of temporal resolution for modeling renewables-based power systems," Renewable Energy, Elsevier, vol. 41(C), pages 285-293.
    12. Huang, Pei & Huang, Gongsheng & Sun, Yongjun, 2018. "Uncertainty-based life-cycle analysis of near-zero energy buildings for performance improvements," Applied Energy, Elsevier, vol. 213(C), pages 486-498.
    13. Peeters, Leen & Dear, Richard de & Hensen, Jan & D'haeseleer, William, 2009. "Thermal comfort in residential buildings: Comfort values and scales for building energy simulation," Applied Energy, Elsevier, vol. 86(5), pages 772-780, May.
    14. Cao, Sunliang & Sirén, Kai, 2014. "Impact of simulation time-resolution on the matching of PV production and household electric demand," Applied Energy, Elsevier, vol. 128(C), pages 192-208.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehrdad Rabani & Habtamu Bayera Madessa & Natasa Nord, 2021. "Building Retrofitting through Coupling of Building Energy Simulation-Optimization Tool with CFD and Daylight Programs," Energies, MDPI, vol. 14(8), pages 1-23, April.
    2. Ferrara, Maria & Della Santa, Francesco & Bilardo, Matteo & De Gregorio, Alessandro & Mastropietro, Antonio & Fugacci, Ulderico & Vaccarino, Francesco & Fabrizio, Enrico, 2021. "Design optimization of renewable energy systems for NZEBs based on deep residual learning," Renewable Energy, Elsevier, vol. 176(C), pages 590-605.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kools, L. & Phillipson, F., 2016. "Data granularity and the optimal planning of distributed generation," Energy, Elsevier, vol. 112(C), pages 342-352.
    2. Karni Siraganyan & Amarasinghage Tharindu Dasun Perera & Jean-Louis Scartezzini & Dasaraden Mauree, 2019. "Eco-Sim: A Parametric Tool to Evaluate the Environmental and Economic Feasibility of Decentralized Energy Systems," Energies, MDPI, vol. 12(5), pages 1-22, February.
    3. Alessandro Burgio & Daniele Menniti & Nicola Sorrentino & Anna Pinnarelli & Zbigniew Leonowicz, 2020. "Influence and Impact of Data Averaging and Temporal Resolution on the Assessment of Energetic, Economic and Technical Issues of Hybrid Photovoltaic-Battery Systems," Energies, MDPI, vol. 13(2), pages 1-26, January.
    4. Menegon, Diego & Persson, Tomas & Haberl, Robert & Bales, Chris & Haller, Michel, 2020. "Direct characterisation of the annual performance of solar thermal and heat pump systems using a six-day whole system test," Renewable Energy, Elsevier, vol. 146(C), pages 1337-1353.
    5. Salom, Jaume & Marszal, Anna Joanna & Widén, Joakim & Candanedo, José & Lindberg, Karen Byskov, 2014. "Analysis of load match and grid interaction indicators in net zero energy buildings with simulated and monitored data," Applied Energy, Elsevier, vol. 136(C), pages 119-131.
    6. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    7. Solano, J.C. & Olivieri, L. & Caamaño-Martín, E., 2017. "Assessing the potential of PV hybrid systems to cover HVAC loads in a grid-connected residential building through intelligent control," Applied Energy, Elsevier, vol. 206(C), pages 249-266.
    8. Luthander, Rasmus & Nilsson, Annica M. & Widén, Joakim & Åberg, Magnus, 2019. "Graphical analysis of photovoltaic generation and load matching in buildings: A novel way of studying self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 250(C), pages 748-759.
    9. Giovani Almeida Dávi & José López de Asiain & Juan Solano & Estefanía Caamaño-Martín & César Bedoya, 2017. "Energy Refurbishment of an Office Building with Hybrid Photovoltaic System and Demand-Side Management," Energies, MDPI, vol. 10(8), pages 1-24, August.
    10. Villa-Arrieta, Manuel & Sumper, Andreas, 2019. "Economic evaluation of Nearly Zero Energy Cities," Applied Energy, Elsevier, vol. 237(C), pages 404-416.
    11. Chai, Jiale & Huang, Pei & Sun, Yongjun, 2019. "Investigations of climate change impacts on net-zero energy building lifecycle performance in typical Chinese climate regions," Energy, Elsevier, vol. 185(C), pages 176-189.
    12. Papadopoulos, V. & Knockaert, J. & Develder, C. & Desmet, J., 2019. "Investigating the need for real time measurements in industrial wind power systems combined with battery storage," Applied Energy, Elsevier, vol. 247(C), pages 559-571.
    13. Baetens, R. & De Coninck, R. & Van Roy, J. & Verbruggen, B. & Driesen, J. & Helsen, L. & Saelens, D., 2012. "Assessing electrical bottlenecks at feeder level for residential net zero-energy buildings by integrated system simulation," Applied Energy, Elsevier, vol. 96(C), pages 74-83.
    14. Haleh Moghaddasi & Charles Culp & Jorge Vanegas & Mehrdad Ehsani, 2021. "Net Zero Energy Buildings: Variations, Clarifications, and Requirements in Response to the Paris Agreement," Energies, MDPI, vol. 14(13), pages 1-21, June.
    15. Sun, Yongjun & Huang, Gongsheng & Xu, Xinhua & Lai, Alvin Chi-Keung, 2018. "Building-group-level performance evaluations of net zero energy buildings with non-collaborative controls," Applied Energy, Elsevier, vol. 212(C), pages 565-576.
    16. Vulic, Natasa & Rüdisüli, Martin & Orehounig, Kristina, 2023. "Evaluating energy flexibility requirements for high shares of variable renewable energy: A heuristic approach," Energy, Elsevier, vol. 270(C).
    17. Poppi, Stefano & Sommerfeldt, Nelson & Bales, Chris & Madani, Hatef & Lundqvist, Per, 2018. "Techno-economic review of solar heat pump systems for residential heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 22-32.
    18. Azuatalam, Donald & Paridari, Kaveh & Ma, Yiju & Förstl, Markus & Chapman, Archie C. & Verbič, Gregor, 2019. "Energy management of small-scale PV-battery systems: A systematic review considering practical implementation, computational requirements, quality of input data and battery degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 555-570.
    19. Talavera, D.L. & Muñoz-Rodriguez, F.J. & Jimenez-Castillo, G. & Rus-Casas, C., 2019. "A new approach to sizing the photovoltaic generator in self-consumption systems based on cost–competitiveness, maximizing direct self-consumption," Renewable Energy, Elsevier, vol. 130(C), pages 1021-1035.
    20. Omar Alrawi & I. Safak Bayram & Sami G. Al-Ghamdi & Muammer Koc, 2019. "High-Resolution Household Load Profiling and Evaluation of Rooftop PV Systems in Selected Houses in Qatar," Energies, MDPI, vol. 12(20), pages 1-25, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:157:y:2020:i:c:p:1185-1202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.