IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v155y2020icp827-836.html
   My bibliography  Save this article

Fermentable sugar production from wet microalgae residual after biodiesel production assisted by radio frequency heating

Author

Listed:
  • Ma, Yichao
  • Wang, Pixiang
  • Wang, Yi
  • Liu, Shaoyang
  • Wang, Qichen
  • Wang, Yifen

Abstract

In this study, the feasibility of comprehensive recovery of lipid and carbohydrate in wet microalgae Chlorella vulgaris was explored. First, four sets of enzyme combinations of α-Amylase, Amyloglucosidase and CTec2 were evaluated for hydrolysis efficiency on microalgae disrupted with radio frequency heating. Then, the most suitable combination was applied to raw microalgae and microalgae residual after biodiesel production, respectively, for saccharification. Adsorption kinetics of the optimized enzyme combination on the aforementioned three samples were determined and adsorption isotherm was analyzed by Freundlich equation. Morphology of microalgae was also investigated by scanning electron microscopy. A yield of reducing sugars in microalgae residual at 54.5% was obtained after 72 h saccharification. The results from enzyme adsorption kinetics, isotherm and SEM images were consistent with each other. This study demonstrated that the microalgae residual after biodiesel production could be used as carbohydrate feedstock for fermentable sugar production through simple enzymatic hydrolysis.

Suggested Citation

  • Ma, Yichao & Wang, Pixiang & Wang, Yi & Liu, Shaoyang & Wang, Qichen & Wang, Yifen, 2020. "Fermentable sugar production from wet microalgae residual after biodiesel production assisted by radio frequency heating," Renewable Energy, Elsevier, vol. 155(C), pages 827-836.
  • Handle: RePEc:eee:renene:v:155:y:2020:i:c:p:827-836
    DOI: 10.1016/j.renene.2020.03.176
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120305097
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.03.176?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Shaoyang & Wang, Yifen & Oh, Jun-Hyun & Herring, Josh L., 2011. "Fast biodiesel production from beef tallow with radio frequency heating," Renewable Energy, Elsevier, vol. 36(3), pages 1003-1007.
    2. Wang, Pixiang & Chen, Yong Mei & Wang, Yifen & Lee, Yoon Y. & Zong, Wenming & Taylor, Steven & McDonald, Timothy & Wang, Yi, 2019. "Towards comprehensive lignocellulosic biomass utilization for bioenergy production: Efficient biobutanol production from acetic acid pretreated switchgrass with Clostridium saccharoperbutylacetonicum ," Applied Energy, Elsevier, vol. 236(C), pages 551-559.
    3. Subhadra, Bobban & Edwards, Mark, 2010. "An integrated renewable energy park approach for algal biofuel production in United States," Energy Policy, Elsevier, vol. 38(9), pages 4897-4902, September.
    4. Macías-Sánchez, M.D. & Robles-Medina, A. & Jiménez-Callejón, M.J. & Hita-Peña, E. & Estéban-Cerdán, L. & González-Moreno, P.A. & Navarro-López, E. & Molina-Grima, E., 2018. "Optimization of biodiesel production from wet microalgal biomass by direct transesterification using the surface response methodology," Renewable Energy, Elsevier, vol. 129(PA), pages 141-149.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Debnath, Chandrani & Bandyopadhyay, Tarun Kanti & Bhunia, Biswanath & Mishra, Umesh & Narayanasamy, Selvaraju & Muthuraj, Muthusivaramapandian, 2021. "Microalgae: Sustainable resource of carbohydrates in third-generation biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Muhammad, Gul & Potchamyou Ngatcha, Ange Douglas & Lv, Yongkun & Xiong, Wenlong & El-Badry, Yaser A. & Asmatulu, Eylem & Xu, Jingliang & Alam, Md Asraful, 2022. "Enhanced biodiesel production from wet microalgae biomass optimized via response surface methodology and artificial neural network," Renewable Energy, Elsevier, vol. 184(C), pages 753-764.
    3. Wang, Yunbo & Xu, Haiqing & Yang, Jinzhi & Zhou, Yan & Wang, Xu & Dou, Shijuan & Li, Liyun & Liu, Guozhen & Yang, Ming, 2022. "Effect of sulfur limitation strategies on glucose-based carbohydrate production from Chlorella sorokiniana," Renewable Energy, Elsevier, vol. 200(C), pages 449-456.
    4. Vieira de Mendonça, Henrique & Assemany, Paula & Abreu, Mariana & Couto, Eduardo & Maciel, Alyne Martins & Duarte, Renata Lopes & Barbosa dos Santos, Marcela Granato & Reis, Alberto, 2021. "Microalgae in a global world: New solutions for old problems?," Renewable Energy, Elsevier, vol. 165(P1), pages 842-862.
    5. Miraglia, Marco & Romano, Donato & Camboni, Domenico & Inglese, Francesco & Oddo, Calogero Maria & Stefanini, Cesare, 2023. "Mechatronics-enabled harvesting of polarized wind kinetic energy through novel bio-mimetic swaying devices," Renewable Energy, Elsevier, vol. 211(C), pages 743-760.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad, Gul & Potchamyou Ngatcha, Ange Douglas & Lv, Yongkun & Xiong, Wenlong & El-Badry, Yaser A. & Asmatulu, Eylem & Xu, Jingliang & Alam, Md Asraful, 2022. "Enhanced biodiesel production from wet microalgae biomass optimized via response surface methodology and artificial neural network," Renewable Energy, Elsevier, vol. 184(C), pages 753-764.
    2. Vasaki E, Madhu & Karri, Rama Rao & Ravindran, Gobinath & Paramasivan, Balasubramanian, 2021. "Predictive capability evaluation and optimization of sustainable biodiesel production from oleaginous biomass grown on pulp and paper industrial wastewater," Renewable Energy, Elsevier, vol. 168(C), pages 204-215.
    3. Subramaniam, D. & Murugesan, A. & Avinash, A. & Kumaravel, A., 2013. "Bio-diesel production and its engine characteristics—An expatiate view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 361-370.
    4. Lean, Hooi Hooi & Smyth, Russell, 2013. "Are fluctuations in US production of renewable energy permanent or transitory?," Applied Energy, Elsevier, vol. 101(C), pages 483-488.
    5. Liu, Li & Jiang, Peng & Qian, Hongliang & Mu, Liwen & Lu, Xiaohua & Zhu, Jiahua, 2022. "CO2-negative biomass conversion: An economic route with co-production of green hydrogen and highly porous carbon," Applied Energy, Elsevier, vol. 311(C).
    6. Marta Ramos & Ana Paula Soares Dias & Jaime Filipe Puna & João Gomes & João Carlos Bordado, 2019. "Biodiesel Production Processes and Sustainable Raw Materials," Energies, MDPI, vol. 12(23), pages 1-30, November.
    7. Budzianowski, Wojciech M. & Postawa, Karol, 2016. "Total Chain Integration of sustainable biorefinery systems," Applied Energy, Elsevier, vol. 184(C), pages 1432-1446.
    8. Zhang, Congyu & Yang, Wu & Chen, Wei-Hsin & Ho, Shih-Hsin & Pétrissans, Anelie & Pétrissans, Mathieu, 2022. "Effect of torrefaction on the structure and reactivity of rice straw as well as life cycle assessment of torrefaction process," Energy, Elsevier, vol. 240(C).
    9. Singh, Anoop & Olsen, Stig Irving, 2011. "A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels," Applied Energy, Elsevier, vol. 88(10), pages 3548-3555.
    10. Alvin B. Culaba & Aristotle T. Ubando & Phoebe Mae L. Ching & Wei-Hsin Chen & Jo-Shu Chang, 2020. "Biofuel from Microalgae: Sustainable Pathways," Sustainability, MDPI, vol. 12(19), pages 1-19, September.
    11. Pinto, T. & Flores-Alsina, X. & Gernaey, K.V. & Junicke, H., 2021. "Alone or together? A review on pure and mixed microbial cultures for butanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    12. Jambo, Siti Azmah & Abdulla, Rahmath & Mohd Azhar, Siti Hajar & Marbawi, Hartinie & Gansau, Jualang Azlan & Ravindra, Pogaku, 2016. "A review on third generation bioethanol feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 756-769.
    13. Shahir, V.K. & Jawahar, C.P. & Suresh, P.R., 2015. "Comparative study of diesel and biodiesel on CI engine with emphasis to emissions—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 686-697.
    14. Yeh, Naichia & Yeh, Pulin & Shih, Naichien & Byadgi, Omkar & Chih Cheng, Ta, 2014. "Applications of light-emitting diodes in researches conducted in aquatic environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 611-618.
    15. Subhadra, Bobban G., 2011. "Water management policies for the algal biofuel sector in the Southwestern United States," Applied Energy, Elsevier, vol. 88(10), pages 3492-3498.
    16. Tsai, Tsung-Yu & Lo, Yung-Chung & Dong, Cheng-Di & Nagarajan, Dillirani & Chang, Jo-Shu & Lee, Duu-Jong, 2020. "Biobutanol production from lignocellulosic biomass using immobilized Clostridium acetobutylicum," Applied Energy, Elsevier, vol. 277(C).
    17. Masri, Mahmoud A. & Jurkowski, Wojciech & Shaigani, Pariya & Haack, Martina & Mehlmer, Norbert & Brück, Thomas, 2018. "A waste-free, microbial oil centered cyclic bio-refinery approach based on flexible macroalgae biomass," Applied Energy, Elsevier, vol. 224(C), pages 1-12.
    18. Rincón, L.E. & Jaramillo, J.J. & Cardona, C.A., 2014. "Comparison of feedstocks and technologies for biodiesel production: An environmental and techno-economic evaluation," Renewable Energy, Elsevier, vol. 69(C), pages 479-487.
    19. de Queiroz Fernandes Araújo, Ofélia & Luiz de Medeiros, José & Yokoyama, Lídia & do Rosário Vaz Morgado, Cláudia, 2015. "Metrics for sustainability analysis of post-combustion abatement of CO2 emissions: Microalgae mediated routes and CCS (carbon capture and storage)," Energy, Elsevier, vol. 92(P3), pages 556-568.
    20. Ajeej, Amritha & Thanikal, Joseph V & Narayanan, C M & Senthil Kumar, R., 2015. "An overview of bio augmentation of methane by anaerobic co-digestion of municipal sludge along with microalgae and waste paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 270-276.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:155:y:2020:i:c:p:827-836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.