IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v131y2019icp617-624.html
   My bibliography  Save this article

Elemental, morphological and thermal analysis of mixed microalgae species from drain water

Author

Listed:
  • Hossain, Nazia
  • Zaini, Juliana
  • Mahlia, T.M.I.
  • Azad, Abul K.

Abstract

In this study, Stigonematales sp. microalgae were collected from drain water and characterized for its' morphological edifice, elemental composition, thermal condition and energy generation capacity by using scanning electron microscopy, energy dispersive X-ray, thermogravimetric analyzer and bomb calorimeter, respectively. Scanning electron micrographs revealed the top view of microalgae and ash pellet with carbon coated specimens at low voltage (5.0 kV) through the secondary electron image detector. Elemental analysis revealed all the major and minor constituents of this microalgae species and its' ash in terms of dry weight (%) and atomic weight (%). Thermogravimetric analysis was conducted at heating rate, 10 °C/min and this experimental results determined moisture content, volatile matter, ash content and fixed carbon of the sample with 4.5%, 35%, 39.5% and 21%, respectively. Microalgae powder blended with bituminous coal by 75%, 50% and 25% measured calorific value 14.07 MJ/kg, 19.88 MJ/kg and 26.42 MJ/kg, respectively. Microalgae (75%) -coal (25%) blend showed excellent amount of energy content, 24.59 MJ/kg. Microalgae blended with coal unveiled an outstanding outcome with elevation of the volatile matter and drop of the ash content. Optimization of microalgae-coal blend in large-scale application can initiate bright future in renewable energy exploration.

Suggested Citation

  • Hossain, Nazia & Zaini, Juliana & Mahlia, T.M.I. & Azad, Abul K., 2019. "Elemental, morphological and thermal analysis of mixed microalgae species from drain water," Renewable Energy, Elsevier, vol. 131(C), pages 617-624.
  • Handle: RePEc:eee:renene:v:131:y:2019:i:c:p:617-624
    DOI: 10.1016/j.renene.2018.07.082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118308796
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.07.082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bartle, Alison, 2002. "Hydropower potential and development activities," Energy Policy, Elsevier, vol. 30(14), pages 1231-1239, November.
    2. Phukan, Mayur M. & Chutia, Rahul S. & Konwar, B.K. & Kataki, R., 2011. "Microalgae Chlorella as a potential bio-energy feedstock," Applied Energy, Elsevier, vol. 88(10), pages 3307-3312.
    3. Madhi, Farshad & Yeung, Ronald W., 2018. "On survivability of asymmetric wave-energy converters in extreme waves," Renewable Energy, Elsevier, vol. 119(C), pages 891-909.
    4. Andrade, L.A. & Batista, F.R.X. & Lira, T.S. & Barrozo, M.A.S. & Vieira, L.G.M., 2018. "Characterization and product formation during the catalytic and non-catalytic pyrolysis of the green microalgae Chlamydomonas reinhardtii," Renewable Energy, Elsevier, vol. 119(C), pages 731-740.
    5. Giostri, A. & Binotti, M. & Macchi, E., 2016. "Microalgae cofiring in coal power plants: Innovative system layout and energy analysis," Renewable Energy, Elsevier, vol. 95(C), pages 449-464.
    6. Nasruddin, & Idrus Alhamid, M. & Daud, Yunus & Surachman, Arief & Sugiyono, Agus & Aditya, H.B. & Mahlia, T.M.I., 2016. "Potential of geothermal energy for electricity generation in Indonesia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 733-740.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md Sumon Reza & Juntakan Taweekun & Shammya Afroze & Shohel Ahmed Siddique & Md. Shahinoor Islam & Chongqing Wang & Abul K. Azad, 2023. "Investigation of Thermochemical Properties and Pyrolysis of Barley Waste as a Source for Renewable Energy," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    2. Hwai Chyuan Ong & M. Mofijur & A.S. Silitonga & D. Gumilang & Fitranto Kusumo & T.M.I. Mahlia, 2020. "Physicochemical Properties of Biodiesel Synthesised from Grape Seed, Philippine Tung, Kesambi, and Palm Oils," Energies, MDPI, vol. 13(6), pages 1-14, March.
    3. Hossain, Nazia & Zaini, Juliana & Indra Mahlia, Teuku Meurah, 2019. "Life cycle assessment, energy balance and sensitivity analysis of bioethanol production from microalgae in a tropical country," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    4. Gyeong-Min Kim & Dae-Gyun Lee & Chung-Hwan Jeon, 2019. "Fundamental Characteristics and Kinetic Analysis of Lignocellulosic Woody and Herbaceous Biomass Fuels," Energies, MDPI, vol. 12(6), pages 1-16, March.
    5. Baloch, Humair Ahmed & Nizamuddin, Sabzoi & Siddiqui, M.T.H. & Mubarak, N.M. & Mazari, Shaukat & Griffin, G.J. & Srinivasan, M.P., 2020. "Co-liquefaction of synthetic polyethylene and polyethylene bags with sugarcane bagasse under supercritical conditions: A comparative study," Renewable Energy, Elsevier, vol. 162(C), pages 2397-2407.
    6. Nazia Hossain & Alyaa Nabihah Razali & Teuku Meurah Indra Mahlia & Tamal Chowdhury & Hemal Chowdhury & Hwai Chyuan Ong & Abd Halim Shamsuddin & Arridina Susan Silitonga, 2019. "Experimental Investigation, Techno-Economic Analysis and Environmental Impact of Bioethanol Production from Banana Stem," Energies, MDPI, vol. 12(20), pages 1-16, October.
    7. Chowdhury, Hemal & Chowdhury, Tamal & Miskat, Monirul Islam & Hossain, Nazia & Chowdhury, Piyal & Sait, Sadiq M., 2021. "Potential of biogas and bioelectricity production from Rohingya camp in Bangladesh: A case study," Energy, Elsevier, vol. 214(C).
    8. Yan, Mi & Liu, Yu & Wen, Xiaoqiang & Yang, Yayong & Cui, Jintao & Chen, Feng & Hantoko, Dwi, 2023. "Effect of operating conditions on hydrothermal liquefaction of kitchen waste with ethanol-water as a co-solvent for bio-oil production," Renewable Energy, Elsevier, vol. 215(C).
    9. Mahlia, T.M.I. & Syazmi, Z.A.H.S. & Mofijur, M. & Abas, A.E. Pg & Bilad, M.R. & Ong, Hwai Chyuan & Silitonga, A.S., 2020. "Patent landscape review on biodiesel production: Technology updates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    10. M. Mofijur & T.M.I. Mahlia & J. Logeswaran & M. Anwar & A.S. Silitonga & S.M. Ashrafur Rahman & A.H. Shamsuddin, 2019. "Potential of Rice Industry Biomass as a Renewable Energy Source," Energies, MDPI, vol. 12(21), pages 1-21, October.
    11. Suwin Sandu & Muyi Yang & Teuku Meurah Indra Mahlia & Wongkot Wongsapai & Hwai Chyuan Ong & Nandy Putra & S. M. Ashrafur Rahman, 2019. "Energy-Related CO 2 Emissions Growth in ASEAN Countries: Trends, Drivers and Policy Implications," Energies, MDPI, vol. 12(24), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Chen & Yuye Jiang & Kai Zhu & Jingwen Yang & Yanxia Fu & Shuang Wang, 2023. "A Review on Industrial CO 2 Capture through Microalgae Regulated by Phytohormones and Cultivation Processes," Energies, MDPI, vol. 16(2), pages 1-17, January.
    2. Yi, Choong-Sung & Lee, Jin-Hee & Shim, Myung-Pil, 2010. "Site location analysis for small hydropower using geo-spatial information system," Renewable Energy, Elsevier, vol. 35(4), pages 852-861.
    3. Peralta-Ruiz, Y. & González-Delgado, A.-D. & Kafarov, V., 2013. "Evaluation of alternatives for microalgae oil extraction based on exergy analysis," Applied Energy, Elsevier, vol. 101(C), pages 226-236.
    4. Zhang, Hengming & Zhou, Binzhen & Vogel, Christopher & Willden, Richard & Zang, Jun & Geng, Jing, 2020. "Hydrodynamic performance of a dual-floater hybrid system combining a floating breakwater and an oscillating-buoy type wave energy converter," Applied Energy, Elsevier, vol. 259(C).
    5. Zhao, Yajing & Wang, Jiangfeng, 2016. "Exergoeconomic analysis and optimization of a flash-binary geothermal power system," Applied Energy, Elsevier, vol. 179(C), pages 159-170.
    6. Ge, Zewen & Geng, Yong & Wei, Wendong & Jiang, Mingkun & Chen, Bin & Li, Jiashuo, 2023. "Embodied carbon emissions induced by the construction of hydropower infrastructure in China," Energy Policy, Elsevier, vol. 173(C).
    7. Jijian Lian & Junling He & Wenjuan Gou & Danjie Ran, 2019. "Effects of Bucket Type and Angle on Downstream Nappe Wind Caused by a Turbulent Jet," IJERPH, MDPI, vol. 16(8), pages 1-16, April.
    8. Lim, Juin Yau & Teng, Sin Yong & How, Bing Shen & Nam, KiJeon & Heo, SungKu & Máša, Vítězslav & Stehlík, Petr & Yoo, Chang Kyoo, 2022. "From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Marcus P. B. Martins & Carla E. Hori & Marcos A. S. Barrozo & Luiz G. M. Vieira, 2022. "Solar Pyrolysis of Spirulina platensis Assisted by Fresnel Lens Using Hydrocalumite-Type Precursors," Energies, MDPI, vol. 15(20), pages 1-19, October.
    10. Kenfack, Joseph & Nzotcha, Urbain & Voufo, Joseph & Ngohe-Ekam, Paul Salomon & Nsangou, Jean Calvin & Bignom, Blaise, 2021. "Cameroon's hydropower potential and development under the vision of Central Africa power pool (CAPP): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    11. Yang, Fujian & Wang, Guiling & Hu, Dawei & Liu, Yanguang & Zhou, Hui & Tan, Xianfeng, 2021. "Calibrations of thermo-hydro-mechanical coupling parameters for heating and water-cooling treated granite," Renewable Energy, Elsevier, vol. 168(C), pages 544-558.
    12. Andrade, L.A. & Batista, F.R.X. & Lira, T.S. & Barrozo, M.A.S. & Vieira, L.G.M., 2018. "Characterization and product formation during the catalytic and non-catalytic pyrolysis of the green microalgae Chlamydomonas reinhardtii," Renewable Energy, Elsevier, vol. 119(C), pages 731-740.
    13. Pettersson, Fredrik, 2007. "Carbon pricing and the diffusion of renewable power generation in Eastern Europe: A linear programming approach," Energy Policy, Elsevier, vol. 35(4), pages 2412-2425, April.
    14. Aniza, Ria & Chen, Wei-Hsin & Lin, Yu-Ying & Tran, Khanh-Quang & Chang, Jo-Shu & Lam, Su Shiung & Park, Young-Kwon & Kwon, Eilhann E. & Tabatabaei, Meisam, 2021. "Independent parallel pyrolysis kinetics of extracted proteins and lipids as well as model carbohydrates in microalgae," Applied Energy, Elsevier, vol. 300(C).
    15. Ramírez-Sagner, Gonzalo & Muñoz, Francisco D., 2019. "The effect of head-sensitive hydropower approximations on investments and operations in planning models for policy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 38-47.
    16. Hurford, A.P. & Harou, J.J. & Bonzanigo, L. & Ray, P.A. & Karki, P. & Bharati, L. & Chinnasamy, P., 2020. "Efficient and robust hydropower system design under uncertainty - A demonstration in Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    17. Watanabe, Hideo & Li, Dalin & Nakagawa, Yoshinao & Tomishige, Keiichi & Kaya, Kunimitsu & Watanabe, Makoto M., 2014. "Characterization of oil-extracted residue biomass of Botryococcus braunii as a biofuel feedstock and its pyrolytic behavior," Applied Energy, Elsevier, vol. 132(C), pages 475-484.
    18. Rosa-Santos, Paulo & Taveira-Pinto, Francisco & Rodríguez, Claudio A. & Ramos, Victor & López, Mario, 2019. "The CECO wave energy converter: Recent developments," Renewable Energy, Elsevier, vol. 139(C), pages 368-384.
    19. Dasgupta, Chitralekha Nag & Suseela, M.R. & Mandotra, S.K. & Kumar, Pankaj & Pandey, Manish K. & Toppo, Kiran & Lone, J.A., 2015. "Dual uses of microalgal biomass: An integrative approach for biohydrogen and biodiesel production," Applied Energy, Elsevier, vol. 146(C), pages 202-208.
    20. Bueno, C. & Carta, J.A., 2006. "Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 312-340, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:131:y:2019:i:c:p:617-624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.