IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v125y2017icp293-299.html
   My bibliography  Save this article

A modified ecological footprint method to evaluate environmental impacts of industrial parks

Author

Listed:
  • Fan, Yupeng
  • Qiao, Qi
  • Xian, Chaofan
  • Xiao, Yang
  • Fang, Lin

Abstract

Industrial parks have been playing a crucial role on driving regional economic development, but also been exerting significant impacts on natural ecosystems due to intensive resource consumption and waste emission. Ecological footprint method is a tool for analyzing the impact of human activities on environment, which has been applied in many fields. Most of the researches applying ecological footprint are conducted on large-scale objects, such as nation and globe. The ecological footprint analysis on the scale of the industrial park, however, is limited. This paper presents a modified ecological footprint accounting model, and applies it to appraise the environmental impact of an industrial park-Hefei economic and technological development area. Results show that the ecological footprint (8.87E+05gha (global hectares)) far exceeds the ecological capacity (4.82E+04gha), meaning that the ecological footprint is 18.4 times of the ecological capacity in the study park. In addition, the ecological footprint reduction caused by eco-industrial development in the study industrial park is quantified by ecological footprint model. The ecological footprint has been reduced by 15.9%, from 1.06E+06gha to 8.87E+05gha, which signifies an obvious environmental performance and economic benefits. Based on this study, the utilization of energy and material could be optimized in industrial park to reduce the influence of industrial activities on natural ecosystem. This paper provides a basis for an industrial park’s environmental management and decision making.

Suggested Citation

  • Fan, Yupeng & Qiao, Qi & Xian, Chaofan & Xiao, Yang & Fang, Lin, 2017. "A modified ecological footprint method to evaluate environmental impacts of industrial parks," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 293-299.
  • Handle: RePEc:eee:recore:v:125:y:2017:i:c:p:293-299
    DOI: 10.1016/j.resconrec.2017.07.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344917301805
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2017.07.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Lingmei & Ni, Weidou & Li, Zheng, 2006. "Emergy evaluation of combined heat and power plant eco-industrial park (CHP plant EIP)," Resources, Conservation & Recycling, Elsevier, vol. 48(1), pages 56-70.
    2. Bin, Guoshu & Parker, Paul, 2012. "Measuring buildings for sustainability: Comparing the initial and retrofit ecological footprint of a century home – The REEP House," Applied Energy, Elsevier, vol. 93(C), pages 24-32.
    3. Meidad Kissinger & Cornelia Sussman & Jennie Moore & William E. Rees, 2013. "Accounting for the Ecological Footprint of Materials in Consumer Goods at the Urban Scale," Sustainability, MDPI, vol. 5(5), pages 1-14, May.
    4. Wackernagel, Mathis & Rees, William E., 1997. "Perceptual and structural barriers to investing in natural capital: Economics from an ecological footprint perspective," Ecological Economics, Elsevier, vol. 20(1), pages 3-24, January.
    5. Marian Chertow & John Ehrenfeld, 2012. "Organizing Self‐Organizing Systems," Journal of Industrial Ecology, Yale University, vol. 16(1), pages 13-27, February.
    6. Farber, Stephen C. & Costanza, Robert & Wilson, Matthew A., 2002. "Economic and ecological concepts for valuing ecosystem services," Ecological Economics, Elsevier, vol. 41(3), pages 375-392, June.
    7. Chang Yu & Gerard P.J. Dijkema & Martin Jong, 2015. "What Makes Eco-Transformation of Industrial Parks Take Off in China?," Journal of Industrial Ecology, Yale University, vol. 19(3), pages 441-456, June.
    8. Gossling, Stefan & Hansson, Carina Borgstrom & Horstmeier, Oliver & Saggel, Stefan, 2002. "Ecological footprint analysis as a tool to assess tourism sustainability," Ecological Economics, Elsevier, vol. 43(2-3), pages 199-211, December.
    9. Yang, Shanlin & Feng, Nanping, 2008. "A case study of industrial symbiosis: Nanning Sugar Co., Ltd. in China," Resources, Conservation & Recycling, Elsevier, vol. 52(5), pages 813-820.
    10. Wackernagel, Mathis & Onisto, Larry & Bello, Patricia & Callejas Linares, Alejandro & Susana Lopez Falfan, Ina & Mendez Garcia, Jesus & Isabel Suarez Guerrero, Ana & Guadalupe Suarez Guerrero, Ma., 1999. "National natural capital accounting with the ecological footprint concept," Ecological Economics, Elsevier, vol. 29(3), pages 375-390, June.
    11. Arrow, Kenneth & Bolin, Bert & Costanza, Robert & Dasgupta, Partha & Folke, Carl & Holling, C.S. & Jansson, Bengt-Owe & Levin, Simon & Mäler, Karl-Göran & Perrings, Charles & Pimentel, David, 1996. "Economic growth, carrying capacity, and the environment," Environment and Development Economics, Cambridge University Press, vol. 1(1), pages 104-110, February.
    12. Lenzen, Manfred & Murray, Shauna A., 2001. "A modified ecological footprint method and its application to Australia," Ecological Economics, Elsevier, vol. 37(2), pages 229-255, May.
    13. Chen, Wei & Liu, Wenjing & Geng, Yong & Brown, Mark T. & Gao, Cuixia & Wu, Rui, 2017. "Recent progress on emergy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1051-1060.
    14. Noel Brings Jacobsen, 2006. "Industrial Symbiosis in Kalundborg, Denmark: A Quantitative Assessment of Economic and Environmental Aspects," Journal of Industrial Ecology, Yale University, vol. 10(1‐2), pages 239-255, January.
    15. Han Shi & Jinping Tian & Lujun Chen, 2012. "China's Quest for Eco‐industrial Parks, Part I," Journal of Industrial Ecology, Yale University, vol. 16(1), pages 8-10, February.
    16. Yune, Jeremy H. & Tian, Jinping & Liu, Wei & Chen, Lujun & Descamps-Large, Cathy, 2016. "Greening Chinese chemical industrial park by implementing industrial ecology strategies: A case study," Resources, Conservation & Recycling, Elsevier, vol. 112(C), pages 54-64.
    17. Marian R. Chertow, 2007. "“Uncovering” Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 11(1), pages 11-30, January.
    18. Begum, Rawshan Ara & Pereira, Joy Jacqueline & Jaafar, Abdul Hamid & Al-Amin, Abul Quasem, 2009. "An empirical assessment of ecological footprint calculations for Malaysia," Resources, Conservation & Recycling, Elsevier, vol. 53(10), pages 582-587.
    19. Costanza, Robert, 1995. "Economic growth, carrying capacity, and the environment," Ecological Economics, Elsevier, vol. 15(2), pages 89-90, November.
    20. Wei Liu & Jinping Tian & Lujun Chen & Wanying Lu & Yang Gao, 2015. "Environmental Performance Analysis of Eco-Industrial Parks in China: A Data Envelopment Analysis Approach," Journal of Industrial Ecology, Yale University, vol. 19(6), pages 1070-1081, December.
    21. Huijbregts, Mark A.J. & Hellweg, Stefanie & Frischknecht, Rolf & Hungerbuhler, Konrad & Hendriks, A. Jan, 2008. "Ecological footprint accounting in the life cycle assessment of products," Ecological Economics, Elsevier, vol. 64(4), pages 798-807, February.
    22. Han Shi & Jinping Tian & Lujun Chen, 2012. "China's Quest for Eco‐industrial Parks, Part II," Journal of Industrial Ecology, Yale University, vol. 16(3), pages 290-292, June.
    23. Berg, Hakan & Michelsen, Petra & Troell, Max & Folke, Carl & Kautsky, Nils, 1996. "Managing aquaculture for sustainability in tropical Lake Kariba, Zimbabwe," Ecological Economics, Elsevier, vol. 18(2), pages 141-159, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ajun Wan & Xiaolei Qi & Weidong Yue & Runqiu Tu, 2022. "Construction and case verification of rural environmental value-added evaluation system," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1781-1797, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, B. & Chen, G.Q., 2007. "Modified ecological footprint accounting and analysis based on embodied exergy--a case study of the Chinese society 1981-2001," Ecological Economics, Elsevier, vol. 61(2-3), pages 355-376, March.
    2. Thomas Wiedmann & John Barrett, 2010. "A Review of the Ecological Footprint Indicator—Perceptions and Methods," Sustainability, MDPI, vol. 2(6), pages 1-49, June.
    3. Yue, Dongxia & Xu, Xiaofeng & Hui, Cang & Xiong, Youcai & Han, Xuemei & Ma, Jinhui, 2011. "Biocapacity supply and demand in Northwestern China: A spatial appraisal of sustainability," Ecological Economics, Elsevier, vol. 70(5), pages 988-994, March.
    4. Carballo Penela, Adolfo & Sebastián Villasante, Carlos, 2008. "Applying physical input-output tables of energy to estimate the energy ecological footprint (EEF) of Galicia (NW Spain)," Energy Policy, Elsevier, vol. 36(3), pages 1148-1163, March.
    5. Malayaranjan Sahoo & Narayan Sethi, 2022. "The dynamic impact of urbanization, structural transformation, and technological innovation on ecological footprint and PM2.5: evidence from newly industrialized countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4244-4277, March.
    6. Olivier Petit & Franck-Dominique Vivien, 2015. "When economists and ecologists meet on Ecological Economics: two science paths around two interdisciplinary concepts," Post-Print halshs-01249774, HAL.
    7. Debrupa Chakraborty & Joyashree Roy, 2015. "Ecological footprint of paperboard and paper production unit in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(4), pages 909-921, August.
    8. White, Thomas J., 2007. "Sharing resources: The global distribution of the Ecological Footprint," Ecological Economics, Elsevier, vol. 64(2), pages 402-410, December.
    9. Jarmo Uusikartano & Hannele Väyrynen & Leena Aarikka-Stenroos, 2020. "Public Agency in Changing Industrial Circular Economy Ecosystems: Roles, Modes and Structures," Sustainability, MDPI, vol. 12(23), pages 1-27, November.
    10. Shao, Ling & Wu, Zi & Chen, G.Q., 2013. "Exergy based ecological footprint accounting for China," Ecological Modelling, Elsevier, vol. 252(C), pages 83-96.
    11. Hoekstra, A.Y., 2009. "Human appropriation of natural capital: A comparison of ecological footprint and water footprint analysis," Ecological Economics, Elsevier, vol. 68(7), pages 1963-1974, May.
    12. Mamouni Limnios, Elena Alexandra & Ghadouani, Anas & Schilizzi, Steven G.M. & Mazzarol, Tim, 2009. "Giving the consumer the choice: A methodology for Product Ecological Footprint calculation," Ecological Economics, Elsevier, vol. 68(10), pages 2525-2534, August.
    13. Lenzen, Manfred & Wier, Mette & Cohen, Claude & Hayami, Hitoshi & Pachauri, Shonali & Schaeffer, Roberto, 2006. "A comparative multivariate analysis of household energy requirements in Australia, Brazil, Denmark, India and Japan," Energy, Elsevier, vol. 31(2), pages 181-207.
    14. Zeng, Douglas Zhihua & Cheng, Lei & Shi, Lei & Luetkenhorst, Wilfried, 2021. "China’s green transformation through eco-industrial parks," World Development, Elsevier, vol. 140(C).
    15. Smith, Nicola J. & McDonald, Garry W. & Patterson, Murray G., 2014. "Is there overshoot of planetary limits? New indicators of human appropriation of the global biogeochemical cycles relative to their regenerative capacity based on ‘ecotime’ analysis," Ecological Economics, Elsevier, vol. 104(C), pages 80-92.
    16. Tang, Yuzhi & Wang, Mengdi & Liu, Qian & Hu, Zhongwen & Zhang, Jie & Shi, Tiezhu & Wu, Guofeng & Su, Fenzhen, 2022. "Ecological carrying capacity and sustainability assessment for coastal zones: A novel framework based on spatial scene and three-dimensional ecological footprint model," Ecological Modelling, Elsevier, vol. 466(C).
    17. Yening Wang & Yuantong Jiang & Yuanmao Zheng & Haowei Wang, 2019. "Assessing the Ecological Carrying Capacity Based on Revised Three-Dimensional Ecological Footprint Model in Inner Mongolia, China," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    18. Chen, B. & Chen, G.Q. & Yang, Z.F. & Jiang, M.M., 2007. "Ecological footprint accounting for energy and resource in China," Energy Policy, Elsevier, vol. 35(3), pages 1599-1609, March.
    19. Ferng, Jiun-Jiun, 2005. "Local sustainable yield and embodied resources in ecological footprint analysis--a case study on the required paddy field in Taiwan," Ecological Economics, Elsevier, vol. 53(3), pages 415-430, May.
    20. Orenstein, Daniel E. & Groner, Elli, 2014. "In the eye of the stakeholder: Changes in perceptions of ecosystem services across an international border," Ecosystem Services, Elsevier, vol. 8(C), pages 185-196.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:125:y:2017:i:c:p:293-299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.