IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v209y2019icp381-398.html
   My bibliography  Save this article

A hybrid L-shaped method to solve a bi-objective stochastic transshipment-enabled inventory routing problem

Author

Listed:
  • Mirzapour Al-e-hashem, Seyed M.J.
  • Rekik, Yacine
  • Mohammadi Hoseinhajlou, Ebrahim

Abstract

Recently, ‘greenness’ has become a very much needed condition in the transportation industry. In this study we develop a ‘green’, transshipment-enabled model for the Inventory Routing Problem (IRP), in a many-to-one distribution network where demand for each product is realistically assumed to be uncertain. The proposed framework is a bi-objective stochastic programming model. The first objective function aims to minimize the expected value of the supply chain costs including inevitable shortage costs. The second objective function aims to minimize the total quantity of the greenhouse gas (GHG) emission produced by the vehicles and disposed products. We introduce a very practical innovative application of transshipment option to control transportation cost, reduce GHG emissions and absorb the uncertainty. In order to solve the proposed model an efficient hybrid algorithm combining L-shaped method (a sort of decomposition approach for stochastic optimization) and compromise programming (a well-known approach for multi-objective optimization) is proposed. The results show that how companies can make a reasonable tradeoff between the cost and environmental concerns and emphasize the role of transshipment option as a lever to improve both economic and environmental performance and absorb the demand fluctuations.

Suggested Citation

  • Mirzapour Al-e-hashem, Seyed M.J. & Rekik, Yacine & Mohammadi Hoseinhajlou, Ebrahim, 2019. "A hybrid L-shaped method to solve a bi-objective stochastic transshipment-enabled inventory routing problem," International Journal of Production Economics, Elsevier, vol. 209(C), pages 381-398.
  • Handle: RePEc:eee:proeco:v:209:y:2019:i:c:p:381-398
    DOI: 10.1016/j.ijpe.2017.06.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527317301895
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2017.06.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lars Magne Nonås & Kurt Jörnsten, 2005. "Heuristics in the Multi-Location Inventory System with Transshipments," Springer Books, in: Herbert Kotzab & Stefan Seuring & Martin Müller & Gerald Reiner (ed.), Research Methodologies in Supply Chain Management, pages 509-524, Springer.
    2. Ann Melissa Campbell & Martin W. P. Savelsbergh, 2004. "A Decomposition Approach for the Inventory-Routing Problem," Transportation Science, INFORMS, vol. 38(4), pages 488-502, November.
    3. Z. Sazvar & K. Govindan & B. Bahli & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2016. "A novel mathematical model for a multi-period, multi-product optimal ordering problem considering expiry dates in a FEFO system," Post-Print hal-02010825, HAL.
    4. Lars Magnus Hvattum & Arne Løkketangen & Gilbert Laporte, 2009. "Scenario Tree-Based Heuristics for Stochastic Inventory-Routing Problems," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 268-285, May.
    5. Iassinovskaia, Galina & Limbourg, Sabine & Riane, Fouad, 2017. "The inventory-routing problem of returnable transport items with time windows and simultaneous pickup and delivery in closed-loop supply chains," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 570-582.
    6. Cheng, Chun & Qi, Mingyao & Wang, Xingyi & Zhang, Ying, 2016. "Multi-period inventory routing problem under carbon emission regulations," International Journal of Production Economics, Elsevier, vol. 182(C), pages 263-275.
    7. Sazvar, Z. & Mirzapour Al-e-hashem, S.M.J. & Govindan, K. & Bahli, B., 2016. "A novel mathematical model for a multi-period, multi-product optimal ordering problem considering expiry dates in a FEFO system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 232-261.
    8. Mirzapour Al-e-hashem, S.M.J. & Rekik, Yacine, 2014. "Multi-product multi-period Inventory Routing Problem with a transshipment option: A green approach," International Journal of Production Economics, Elsevier, vol. 157(C), pages 80-88.
    9. T. William Chien & Anantaram Balakrishnan & Richard T. Wong, 1989. "An Integrated Inventory Allocation and Vehicle Routing Problem," Transportation Science, INFORMS, vol. 23(2), pages 67-76, May.
    10. Birendra K. Mishra & Srinivasan Raghunathan, 2004. "Retailer- vs. Vendor-Managed Inventory and Brand Competition," Management Science, INFORMS, vol. 50(4), pages 445-457, April.
    11. Baita, Flavio & Ukovich, Walter & Pesenti, Raffaele & Favaretto, Daniela, 1998. "Dynamic routing-and-inventory problems: a review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(8), pages 585-598, November.
    12. Anton J. Kleywegt & Vijay S. Nori & Martin W. P. Savelsbergh, 2004. "Dynamic Programming Approximations for a Stochastic Inventory Routing Problem," Transportation Science, INFORMS, vol. 38(1), pages 42-70, February.
    13. Persson, Jan A. & Gothe-Lundgren, Maud, 2005. "Shipment planning at oil refineries using column generation and valid inequalities," European Journal of Operational Research, Elsevier, vol. 163(3), pages 631-652, June.
    14. Claudia Archetti & Luca Bertazzi & Gilbert Laporte & Maria Grazia Speranza, 2007. "A Branch-and-Cut Algorithm for a Vendor-Managed Inventory-Routing Problem," Transportation Science, INFORMS, vol. 41(3), pages 382-391, August.
    15. Anton J. Kleywegt & Vijay S. Nori & Martin W. P. Savelsbergh, 2002. "The Stochastic Inventory Routing Problem with Direct Deliveries," Transportation Science, INFORMS, vol. 36(1), pages 94-118, February.
    16. Seyed Mohammad Javad Mirzapour Al-E-Hashem & Yacine Rekik, 2014. "Multi-product multi-period inventory routing problem with a transshipment option : A green approach," Post-Print hal-02313081, HAL.
    17. Moin, N.H. & Salhi, S. & Aziz, N.A.B., 2011. "An efficient hybrid genetic algorithm for the multi-product multi-period inventory routing problem," International Journal of Production Economics, Elsevier, vol. 133(1), pages 334-343, September.
    18. Sazvar, Z. & Mirzapour Al-e-hashem, S.M.J. & Baboli, A. & Akbari Jokar, M.R., 2014. "A bi-objective stochastic programming model for a centralized green supply chain with deteriorating products," International Journal of Production Economics, Elsevier, vol. 150(C), pages 140-154.
    19. Mirzapour Al-e-hashem, S.M.J. & Baboli, A. & Sazvar, Z., 2013. "A stochastic aggregate production planning model in a green supply chain: Considering flexible lead times, nonlinear purchase and shortage cost functions," European Journal of Operational Research, Elsevier, vol. 230(1), pages 26-41.
    20. Soysal, Mehmet & Bloemhof-Ruwaard, Jacqueline M. & Haijema, Rene & van der Vorst, Jack G.A.J., 2015. "Modeling an Inventory Routing Problem for perishable products with environmental considerations and demand uncertainty," International Journal of Production Economics, Elsevier, vol. 164(C), pages 118-133.
    21. Oğuz Solyalı & Jean-François Cordeau & Gilbert Laporte, 2012. "Robust Inventory Routing Under Demand Uncertainty," Transportation Science, INFORMS, vol. 46(3), pages 327-340, August.
    22. Maria Grazia Speranza & Walter Ukovich, 1994. "Minimizing Transportation and Inventory Costs for Several Products on a Single Link," Operations Research, INFORMS, vol. 42(5), pages 879-894, October.
    23. Yu, Yugang & Chen, Haoxun & Chu, Feng, 2008. "A new model and hybrid approach for large scale inventory routing problems," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1022-1040, September.
    24. Walter J. Bell & Louis M. Dalberto & Marshall L. Fisher & Arnold J. Greenfield & R. Jaikumar & Pradeep Kedia & Robert G. Mack & Paul J. Prutzman, 1983. "Improving the Distribution of Industrial Gases with an On-Line Computerized Routing and Scheduling Optimizer," Interfaces, INFORMS, vol. 13(6), pages 4-23, December.
    25. Awi Federgruen & Paul Zipkin, 1984. "A Combined Vehicle Routing and Inventory Allocation Problem," Operations Research, INFORMS, vol. 32(5), pages 1019-1037, October.
    26. Seyed Mohammad Javad Mirzapour Al-E-Hashem & Armand Baboli & Z. Sazvar, 2013. "A stochastic aggregate production planning model in a green supply chain : Considering flexible lead times, nonlinear purchase and shortage cost functions," Post-Print hal-02313031, HAL.
    27. Luca Bertazzi & Maria Grazia Speranza, 2002. "Continuous and Discrete Shipping Strategies for the Single Link Problem," Transportation Science, INFORMS, vol. 36(3), pages 314-325, August.
    28. Huang, Shan-Huen & Lin, Pei-Chun, 2010. "A modified ant colony optimization algorithm for multi-item inventory routing problems with demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(5), pages 598-611, September.
    29. Leandro C. Coelho & Jean-François Cordeau & Gilbert Laporte, 2014. "Thirty Years of Inventory Routing," Transportation Science, INFORMS, vol. 48(1), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chenbo Zhu & Juntian Yue & Jing Chen, 2022. "Green Product Development and Order Strategies for Retailers," Sustainability, MDPI, vol. 14(15), pages 1-18, August.
    2. Yann Mey Yee & Lilian Sy & Kryzia Lomibao & Josephine Dela Cruz German & Hui-Ming Wee, 2023. "Sustainable Economic Production Quantity Model Considering Greenhouse Gas and Wastewater Emissions," Sustainability, MDPI, vol. 15(4), pages 1-30, February.
    3. Rahmati, Reza & Neghabi, Hossein & Bashiri, Mahdi & Salari, Majid, 2023. "Stochastic regional-based profit-maximizing hub location problem: A sustainable overview," Omega, Elsevier, vol. 121(C).
    4. Neves-Moreira, Fábio & Almada-Lobo, Bernardo & Guimarães, Luís & Amorim, Pedro, 2022. "The multi-product inventory-routing problem with pickups and deliveries: Mitigating fluctuating demand via rolling horizon heuristics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    5. Mohammadi, S. & Al-e-Hashem, S.M.J. Mirzapour & Rekik, Y., 2020. "An integrated production scheduling and delivery route planning with multi-purpose machines: A case study from a furniture manufacturing company," International Journal of Production Economics, Elsevier, vol. 219(C), pages 347-359.
    6. S. Mohammadi & S. Al-E-Hashem & Yacine Rekik, 2020. "An integrated production scheduling and delivery route planning with multi-purpose machines: A case study from a furniture manufacturing company," Post-Print hal-02194222, HAL.
    7. Hang Thi Thanh Vu & Jeonghan Ko, 2023. "Inventory Transshipment Considering Greenhouse Gas Emissions for Sustainable Cross-Filling in Cold Supply Chains," Sustainability, MDPI, vol. 15(9), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timajchi, Ali & Mirzapour Al-e-Hashem, Seyed M.J. & Rekik, Yacine, 2019. "Inventory routing problem for hazardous and deteriorating items in the presence of accident risk with transshipment option," International Journal of Production Economics, Elsevier, vol. 209(C), pages 302-315.
    2. Leandro C. Coelho & Jean-François Cordeau & Gilbert Laporte, 2014. "Thirty Years of Inventory Routing," Transportation Science, INFORMS, vol. 48(1), pages 1-19, February.
    3. Cárdenas-Barrón, Leopoldo Eduardo & González-Velarde, José Luis & Treviño-Garza, Gerardo & Garza-Nuñez, Dagoberto, 2019. "Heuristic algorithm based on reduce and optimize approach for a selective and periodic inventory routing problem in a waste vegetable oil collection environment," International Journal of Production Economics, Elsevier, vol. 211(C), pages 44-59.
    4. Mirzapour Al-e-hashem, S.M.J. & Rekik, Yacine, 2014. "Multi-product multi-period Inventory Routing Problem with a transshipment option: A green approach," International Journal of Production Economics, Elsevier, vol. 157(C), pages 80-88.
    5. Hadi Jahangir & Mohammad Mohammadi & Seyed Hamid Reza Pasandideh & Neda Zendehdel Nobari, 2019. "Comparing performance of genetic and discrete invasive weed optimization algorithms for solving the inventory routing problem with an incremental delivery," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2327-2353, August.
    6. Fokkema, Jan Eise & Land, Martin J. & Coelho, Leandro C. & Wortmann, Hans & Huitema, George B., 2020. "A continuous-time supply-driven inventory-constrained routing problem," Omega, Elsevier, vol. 92(C).
    7. Oğuz Solyalı & Jean-François Cordeau & Gilbert Laporte, 2012. "Robust Inventory Routing Under Demand Uncertainty," Transportation Science, INFORMS, vol. 46(3), pages 327-340, August.
    8. Song, Ruidian & Zhao, Lei & Van Woensel, Tom & Fransoo, Jan C., 2019. "Coordinated delivery in urban retail," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 122-148.
    9. Oğuz Solyalı & Haldun Süral, 2011. "A Branch-and-Cut Algorithm Using a Strong Formulation and an A Priori Tour-Based Heuristic for an Inventory-Routing Problem," Transportation Science, INFORMS, vol. 45(3), pages 335-345, August.
    10. Ahmed Kheiri, 2020. "Heuristic Sequence Selection for Inventory Routing Problem," Transportation Science, INFORMS, vol. 54(2), pages 302-312, March.
    11. Rossi, Roberto & Tomasella, Maurizio & Martin-Barragan, Belen & Embley, Tim & Walsh, Christopher & Langston, Matthew, 2019. "The Dynamic Bowser Routing Problem," European Journal of Operational Research, Elsevier, vol. 275(1), pages 108-126.
    12. Jafarian, Ahmad & Asgari, Nasrin & Mohri, Seyed Sina & Fatemi-Sadr, Elham & Farahani, Reza Zanjirani, 2019. "The inventory-routing problem subject to vehicle failure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 254-294.
    13. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2020. "A green delivery-pickup problem for home hemodialysis machines; sharing economy in distributing scarce resources," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    14. Yves Crama & Mahmood Rezaei & Martin Savelsbergh & Tom Van Woensel, 2018. "Stochastic Inventory Routing for Perishable Products," Transportation Science, INFORMS, vol. 52(3), pages 526-546, June.
    15. Markov, Iliya & Bierlaire, Michel & Cordeau, Jean-François & Maknoon, Yousef & Varone, Sacha, 2018. "A unified framework for rich routing problems with stochastic demands," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 213-240.
    16. Alvarez, Aldair & Cordeau, Jean-François & Jans, Raf & Munari, Pedro & Morabito, Reinaldo, 2021. "Inventory routing under stochastic supply and demand," Omega, Elsevier, vol. 102(C).
    17. Zhouxing Su & Zhipeng Lü & Zhuo Wang & Yanmin Qi & Una Benlic, 2020. "A Matheuristic Algorithm for the Inventory Routing Problem," Transportation Science, INFORMS, vol. 54(2), pages 330-354, March.
    18. Yugang Yu & Chengbin Chu & Haoxun Chen & Feng Chu, 2012. "Large scale stochastic inventory routing problems with split delivery and service level constraints," Annals of Operations Research, Springer, vol. 197(1), pages 135-158, August.
    19. Ketzenberg, Michael E. & Metters, Richard D., 2020. "Adapting operations to new information technology: A failed “internet of things” application," Omega, Elsevier, vol. 92(C).
    20. Bertazzi, Luca & Moezi, Sarem Deilami & Maggioni, Francesca, 2021. "The value of integration of full container load, less than container load and air freight shipments in vendor–managed inventory systems," International Journal of Production Economics, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:209:y:2019:i:c:p:381-398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.