IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v54y2020i2p330-354.html
   My bibliography  Save this article

A Matheuristic Algorithm for the Inventory Routing Problem

Author

Listed:
  • Zhouxing Su

    (SMART, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Zhipeng Lü

    (SMART, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Zhuo Wang

    (SMART, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Yanmin Qi

    (SMART, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Una Benlic

    (Tesco Plc, Holborn, London EC1R 5AR, United Kingdom)

Abstract

This work addresses a challenging inventory routing problem that arises from a practical application faced by air-product companies, including Air Liquide. Given its computational complexity and industrial importance, this problem (denoted as IRP-Challenge2016) was presented as the topic of the French Operational Research and Decision Support Society/European Operational Research Society (ROADEF/EURO) Challenge 2016. The IRP-Challenge2016 seeks an optimal delivery schedule to minimize the unit distribution cost, while satisfying various hard constraints. It involves a single product, a heterogeneous fleet, heterogeneous drivers, multiperiods, a deterministic consumption forecast, and time-window constraints. We present a new mathematical formulation of the problem and introduce a matheuristic algorithm that integrates a local search-based metaheuristic with mathematical programming. Our algorithm combines mixed integer programming and linear programming as slave methods to optimize timing and delivery and embeds these procedures within a multineighborhood search metaheuristic to adjust routes. The method extends and enhances a preliminary version of our algorithm, which ranked third in the final round of the ROADEF/EURO Challenge 2016. Computational results for 20 challenge benchmark instances demonstrate the value of the proposed algorithm in terms of both effectiveness and efficiency with respect to the results reported in the competition. We additionally analyze several key components of our matheuristic to gain an insight into its operation.

Suggested Citation

  • Zhouxing Su & Zhipeng Lü & Zhuo Wang & Yanmin Qi & Una Benlic, 2020. "A Matheuristic Algorithm for the Inventory Routing Problem," Transportation Science, INFORMS, vol. 54(2), pages 330-354, March.
  • Handle: RePEc:inm:ortrsc:v:54:y:2020:i:2:p:330-354
    DOI: 10.1287/trsc.2019.0930
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/trsc.2019.0930
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2019.0930?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ann Melissa Campbell & Martin W. P. Savelsbergh, 2004. "A Decomposition Approach for the Inventory-Routing Problem," Transportation Science, INFORMS, vol. 38(4), pages 488-502, November.
    2. Thierry Benoist & Frédéric Gardi & Antoine Jeanjean & Bertrand Estellon, 2011. "Randomized Local Search for Real-Life Inventory Routing," Transportation Science, INFORMS, vol. 45(3), pages 381-398, August.
    3. Raïd Mansi & Saïd Hanafi & Christophe Wilbaut & François Clautiaux, 2012. "Disruptions in the airline industry: math-heuristics for re-assigning aircraft and passengers simultaneously," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 6(6), pages 690-712.
    4. Guerrero, W.J. & Prodhon, C. & Velasco, N. & Amaya, C.A., 2013. "Hybrid heuristic for the inventory location-routing problem with deterministic demand," International Journal of Production Economics, Elsevier, vol. 146(1), pages 359-370.
    5. Guy Desaulniers & Jørgen G. Rakke & Leandro C. Coelho, 2016. "A Branch-Price-and-Cut Algorithm for the Inventory-Routing Problem," Transportation Science, INFORMS, vol. 50(3), pages 1060-1076, August.
    6. T. William Chien & Anantaram Balakrishnan & Richard T. Wong, 1989. "An Integrated Inventory Allocation and Vehicle Routing Problem," Transportation Science, INFORMS, vol. 23(2), pages 67-76, May.
    7. Pierre Hansen & Nenad Mladenović, 2014. "Variable Neighborhood Search," Springer Books, in: Edmund K. Burke & Graham Kendall (ed.), Search Methodologies, edition 2, chapter 0, pages 313-337, Springer.
    8. Zhao, Qiu-Hong & Wang, Shou-Yang & Lai, K.K., 2007. "A partition approach to the inventory/routing problem," European Journal of Operational Research, Elsevier, vol. 177(2), pages 786-802, March.
    9. Claudia Archetti & Luca Bertazzi & Alain Hertz & M. Grazia Speranza, 2012. "A Hybrid Heuristic for an Inventory Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 101-116, February.
    10. Lü, Zhipeng & Hao, Jin-Kao, 2010. "Adaptive Tabu Search for course timetabling," European Journal of Operational Research, Elsevier, vol. 200(1), pages 235-244, January.
    11. Moin, N.H. & Salhi, S. & Aziz, N.A.B., 2011. "An efficient hybrid genetic algorithm for the multi-product multi-period inventory routing problem," International Journal of Production Economics, Elsevier, vol. 133(1), pages 334-343, September.
    12. Zhao, Qiu-Hong & Chen, Shuang & Zang, Cun-Xun, 2008. "Model and algorithm for inventory/routing decision in a three-echelon logistics system," European Journal of Operational Research, Elsevier, vol. 191(3), pages 623-635, December.
    13. Oğuz Solyalı & Haldun Süral, 2011. "A Branch-and-Cut Algorithm Using a Strong Formulation and an A Priori Tour-Based Heuristic for an Inventory-Routing Problem," Transportation Science, INFORMS, vol. 45(3), pages 335-345, August.
    14. Luca Bertazzi & Giuseppe Paletta & M. Grazia Speranza, 2002. "Deterministic Order-Up-To Level Policies in an Inventory Routing Problem," Transportation Science, INFORMS, vol. 36(1), pages 119-132, February.
    15. Jonathan F. Bard & Liu Huang & Patrick Jaillet & Moshe Dror, 1998. "A Decomposition Approach to the Inventory Routing Problem with Satellite Facilities," Transportation Science, INFORMS, vol. 32(2), pages 189-203, May.
    16. Pasquale Avella & Maurizio Boccia & Laurence A. Wolsey, 2018. "Single-period cutting planes for inventory routing problems," LIDAM Reprints CORE 3009, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    17. Anton J. Kleywegt & Vijay S. Nori & Martin W. P. Savelsbergh, 2004. "Dynamic Programming Approximations for a Stochastic Inventory Routing Problem," Transportation Science, INFORMS, vol. 38(1), pages 42-70, February.
    18. Claudia Archetti & Martin Savelsbergh, 2009. "The Trip Scheduling Problem," Transportation Science, INFORMS, vol. 43(4), pages 417-431, November.
    19. Awi Federgruen & Paul Zipkin, 1984. "A Combined Vehicle Routing and Inventory Allocation Problem," Operations Research, INFORMS, vol. 32(5), pages 1019-1037, October.
    20. A. Charnes & W. W. Cooper, 1962. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 9(3‐4), pages 181-186, September.
    21. Pasquale Avella & Maurizio Boccia & Laurence A. Wolsey, 2018. "Single-Period Cutting Planes for Inventory Routing Problems," Transportation Science, INFORMS, vol. 52(3), pages 497-508, June.
    22. Rita Ribeiro & Helena Ramalhinho-Lourenço, 2003. "Inventory-routing model, for a multi-period problem with stochastic and deterministic demand," Economics Working Papers 725, Department of Economics and Business, Universitat Pompeu Fabra.
    23. Roel G. van Anholt & Leandro C. Coelho & Gilbert Laporte & Iris F. A. Vis, 2016. "An Inventory-Routing Problem with Pickups and Deliveries Arising in the Replenishment of Automated Teller Machines," Transportation Science, INFORMS, vol. 50(3), pages 1077-1091, August.
    24. Claudia Archetti & Luca Bertazzi & Gilbert Laporte & Maria Grazia Speranza, 2007. "A Branch-and-Cut Algorithm for a Vendor-Managed Inventory-Routing Problem," Transportation Science, INFORMS, vol. 41(3), pages 382-391, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Aijun & Zhu, Qiuyun & Xu, Lei & Lu, Qiang & Fan, Youqing, 2021. "Sustainable supply chain management for perishable products in emerging markets: An integrated location-inventory-routing model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    2. Jean André & Eric Bourreau & Roberto Wolfler Calvo, 2020. "Introduction to the Special Section: ROADEF/EURO Challenge 2016—Inventory Routing Problem," Transportation Science, INFORMS, vol. 54(2), pages 299-301, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leandro C. Coelho & Jean-François Cordeau & Gilbert Laporte, 2014. "Thirty Years of Inventory Routing," Transportation Science, INFORMS, vol. 48(1), pages 1-19, February.
    2. Cárdenas-Barrón, Leopoldo Eduardo & González-Velarde, José Luis & Treviño-Garza, Gerardo & Garza-Nuñez, Dagoberto, 2019. "Heuristic algorithm based on reduce and optimize approach for a selective and periodic inventory routing problem in a waste vegetable oil collection environment," International Journal of Production Economics, Elsevier, vol. 211(C), pages 44-59.
    3. Ahmed Kheiri, 2020. "Heuristic Sequence Selection for Inventory Routing Problem," Transportation Science, INFORMS, vol. 54(2), pages 302-312, March.
    4. Fokkema, Jan Eise & Land, Martin J. & Coelho, Leandro C. & Wortmann, Hans & Huitema, George B., 2020. "A continuous-time supply-driven inventory-constrained routing problem," Omega, Elsevier, vol. 92(C).
    5. Song, Ruidian & Zhao, Lei & Van Woensel, Tom & Fransoo, Jan C., 2019. "Coordinated delivery in urban retail," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 122-148.
    6. Ali Ekici & Okan Örsan Özener & Gültekin Kuyzu, 2015. "Cyclic Delivery Schedules for an Inventory Routing Problem," Transportation Science, INFORMS, vol. 49(4), pages 817-829, November.
    7. Jafarian, Ahmad & Asgari, Nasrin & Mohri, Seyed Sina & Fatemi-Sadr, Elham & Farahani, Reza Zanjirani, 2019. "The inventory-routing problem subject to vehicle failure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 254-294.
    8. Bertazzi, Luca & Chua, Geoffrey A. & Laganà, Demetrio & Paradiso, Rosario, 2022. "Analysis of effective sets of routes for the split-delivery periodic inventory routing problem," European Journal of Operational Research, Elsevier, vol. 298(2), pages 463-477.
    9. Bertazzi, Luca & Coelho, Leandro C. & De Maio, Annarita & Laganà, Demetrio, 2019. "A matheuristic algorithm for the multi-depot inventory routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 524-544.
    10. Oğuz Solyalı & Jean-François Cordeau & Gilbert Laporte, 2012. "Robust Inventory Routing Under Demand Uncertainty," Transportation Science, INFORMS, vol. 46(3), pages 327-340, August.
    11. Zhenzhen Zhang & Zhixing Luo & Roberto Baldacci & Andrew Lim, 2021. "A Benders Decomposition Approach for the Multivehicle Production Routing Problem with Order-up-to-Level Policy," Transportation Science, INFORMS, vol. 55(1), pages 160-178, 1-2.
    12. Diabat, Ali & Bianchessi, Nicola & Archetti, Claudia, 2024. "On the zero-inventory-ordering policy in the inventory routing problem," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1024-1038.
    13. Ziye Tang & Yang Jiao & R. Ravi, 2022. "Combinatorial Heuristics for Inventory Routing Problems," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 370-384, January.
    14. Yves Crama & Mahmood Rezaei & Martin Savelsbergh & Tom Van Woensel, 2018. "Stochastic Inventory Routing for Perishable Products," Transportation Science, INFORMS, vol. 52(3), pages 526-546, June.
    15. Mohd Kamarul Irwan Abdul Rahim & El-Houssaine Aghezzaf & Veronique Limère & Birger Raa, 2016. "Analysing the effectiveness of vendor-managed inventory in a single-warehouse, multiple-retailer system," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(8), pages 1953-1965, June.
    16. Li, Kunpeng & Chen, Bin & Sivakumar, Appa Iyer & Wu, Yong, 2014. "An inventory–routing problem with the objective of travel time minimization," European Journal of Operational Research, Elsevier, vol. 236(3), pages 936-945.
    17. Divsalar, Ali & Vansteenwegen, Pieter, 2016. "A two-phase algorithm for the cyclic inventory routing problemAuthor-Name: Chitsaz, Masoud," European Journal of Operational Research, Elsevier, vol. 254(2), pages 410-426.
    18. Manousakis, Eleftherios & Repoussis, Panagiotis & Zachariadis, Emmanouil & Tarantilis, Christos, 2021. "Improved branch-and-cut for the Inventory Routing Problem based on a two-commodity flow formulation," European Journal of Operational Research, Elsevier, vol. 290(3), pages 870-885.
    19. Emre Çankaya & Ali Ekici & Okan Örsan Özener, 2019. "Humanitarian relief supplies distribution: an application of inventory routing problem," Annals of Operations Research, Springer, vol. 283(1), pages 119-141, December.
    20. Mirzapour Al-e-hashem, Seyed M.J. & Rekik, Yacine & Mohammadi Hoseinhajlou, Ebrahim, 2019. "A hybrid L-shaped method to solve a bi-objective stochastic transshipment-enabled inventory routing problem," International Journal of Production Economics, Elsevier, vol. 209(C), pages 381-398.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:54:y:2020:i:2:p:330-354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.