IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v200y2010i1p235-244.html
   My bibliography  Save this article

Adaptive Tabu Search for course timetabling

Author

Listed:
  • Lü, Zhipeng
  • Hao, Jin-Kao

Abstract

This paper presents an Adaptive Tabu Search algorithm (denoted by ATS) for solving a problem of curriculum-based course timetabling. The proposed algorithm follows a general framework composed of three phases: initialization, intensification and diversification. The initialization phase constructs a feasible initial timetable using a fast greedy heuristic. Then an adaptively combined intensification and diversification phase is used to reduce the number of soft constraint violations while maintaining the satisfaction of hard constraints. The proposed ATS algorithm integrates several distinguished features such as an original double Kempe chains neighborhood structure, a penalty-guided perturbation operator and an adaptive search mechanism. Computational results show the high effectiveness of the proposed ATS algorithm, compared with five reference algorithms as well as the current best known results. This paper also shows an analysis to explain which are the essential ingredients of the ATS algorithm.

Suggested Citation

  • Lü, Zhipeng & Hao, Jin-Kao, 2010. "Adaptive Tabu Search for course timetabling," European Journal of Operational Research, Elsevier, vol. 200(1), pages 235-244, January.
  • Handle: RePEc:eee:ejores:v:200:y:2010:i:1:p:235-244
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)01039-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E K Burke & B L MacCarthy & S Petrovic & R Qu, 2006. "Multiple-retrieval case-based reasoning for course timetabling problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(2), pages 148-162, February.
    2. De Causmaecker, Patrick & Demeester, Peter & Vanden Berghe, Greet, 2009. "A decomposed metaheuristic approach for a real-world university timetabling problem," European Journal of Operational Research, Elsevier, vol. 195(1), pages 307-318, May.
    3. Al-Yakoob, Salem M. & Sherali, Hanif D., 2006. "Mathematical programming models and algorithms for a class-faculty assignment problem," European Journal of Operational Research, Elsevier, vol. 173(2), pages 488-507, September.
    4. White, George M. & Xie, Bill S. & Zonjic, Stevan, 2004. "Using tabu search with longer-term memory and relaxation to create examination timetables," European Journal of Operational Research, Elsevier, vol. 153(1), pages 80-91, February.
    5. Rodrigues, Maikol M. & de Souza, Cid C. & Moura, Arnaldo V., 2006. "Vehicle and crew scheduling for urban bus lines," European Journal of Operational Research, Elsevier, vol. 170(3), pages 844-862, May.
    6. Burke, Edmund K. & McCollum, Barry & Meisels, Amnon & Petrovic, Sanja & Qu, Rong, 2007. "A graph-based hyper-heuristic for educational timetabling problems," European Journal of Operational Research, Elsevier, vol. 176(1), pages 177-192, January.
    7. Rasmussen, Rasmus V. & Trick, Michael A., 2008. "Round robin scheduling - a survey," European Journal of Operational Research, Elsevier, vol. 188(3), pages 617-636, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lewis, R. & Thompson, J., 2015. "Analysing the effects of solution space connectivity with an effective metaheuristic for the course timetabling problem," European Journal of Operational Research, Elsevier, vol. 240(3), pages 637-648.
    2. Roberto Asín Achá & Robert Nieuwenhuis, 2014. "Curriculum-based course timetabling with SAT and MaxSAT," Annals of Operations Research, Springer, vol. 218(1), pages 71-91, July.
    3. Rezaei, Mahmood & Shamsaei, Fahimeh & Mohammadian, Iman & Van Vyve, Mathieu, 2012. "A heuristic method to schedule training programs for Small and Medium Enterprises," European Journal of Operational Research, Elsevier, vol. 217(3), pages 600-608.
    4. Kadri Sylejmani & Edon Gashi & Adrian Ymeri, 2023. "Simulated annealing with penalization for university course timetabling," Journal of Scheduling, Springer, vol. 26(5), pages 497-517, October.
    5. Zeng, Zhizhong & Yu, Xinguo & He, Kun & Huang, Wenqi & Fu, Zhanghua, 2016. "Iterated Tabu Search and Variable Neighborhood Descent for packing unequal circles into a circular container," European Journal of Operational Research, Elsevier, vol. 250(2), pages 615-627.
    6. Zhouxing Su & Zhipeng Lü & Zhuo Wang & Yanmin Qi & Una Benlic, 2020. "A Matheuristic Algorithm for the Inventory Routing Problem," Transportation Science, INFORMS, vol. 54(2), pages 330-354, March.
    7. Moritz Mühlenthaler & Rolf Wanka, 2016. "Fairness in academic course timetabling," Annals of Operations Research, Springer, vol. 239(1), pages 171-188, April.
    8. Andrea Bettinelli & Valentina Cacchiani & Roberto Roberti & Paolo Toth, 2015. "An overview of curriculum-based course timetabling," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 313-349, July.
    9. Lü, Zhipeng & Hao, Jin-Kao, 2012. "Adaptive neighborhood search for nurse rostering," European Journal of Operational Research, Elsevier, vol. 218(3), pages 865-876.
    10. Hao, Jin-Kao & Benlic, Una, 2011. "Lower bounds for the ITC-2007 curriculum-based course timetabling problem," European Journal of Operational Research, Elsevier, vol. 212(3), pages 464-472, August.
    11. Mutsunori Banbara & Katsumi Inoue & Benjamin Kaufmann & Tenda Okimoto & Torsten Schaub & Takehide Soh & Naoyuki Tamura & Philipp Wanko, 2019. "$${\varvec{teaspoon}}$$ teaspoon : solving the curriculum-based course timetabling problems with answer set programming," Annals of Operations Research, Springer, vol. 275(1), pages 3-37, April.
    12. Taoqing Zhou & Zhipeng Lü & Yang Wang & Junwen Ding & Bo Peng, 2016. "Multi-start iterated tabu search for the minimum weight vertex cover problem," Journal of Combinatorial Optimization, Springer, vol. 32(2), pages 368-384, August.
    13. Alexander Kiefer & Richard F. Hartl & Alexander Schnell, 2017. "Adaptive large neighborhood search for the curriculum-based course timetabling problem," Annals of Operations Research, Springer, vol. 252(2), pages 255-282, May.
    14. Soria-Alcaraz, Jorge A. & Ochoa, Gabriela & Sotelo-Figeroa, Marco A. & Burke, Edmund K., 2017. "A methodology for determining an effective subset of heuristics in selection hyper-heuristics," European Journal of Operational Research, Elsevier, vol. 260(3), pages 972-983.
    15. Fu, Zhanghua & Huang, Wenqi & Lü, Zhipeng, 2013. "Iterated tabu search for the circular open dimension problem," European Journal of Operational Research, Elsevier, vol. 225(2), pages 236-243.
    16. Vermuyten, Hendrik & Lemmens, Stef & Marques, Inês & Beliën, Jeroen, 2016. "Developing compact course timetables with optimized student flows," European Journal of Operational Research, Elsevier, vol. 251(2), pages 651-661.
    17. Bhuvnesh Sharma & M. Ramkumar & Nachiappan Subramanian & Bharat Malhotra, 2019. "Dynamic temporary blood facility location-allocation during and post-disaster periods," Annals of Operations Research, Springer, vol. 283(1), pages 705-736, December.
    18. George Henrique Godim Fonseca & Haroldo Gambini Santos & Túlio Ângelo Machado Toffolo & Samuel Souza Brito & Marcone Jamilson Freitas Souza, 2016. "GOAL solver: a hybrid local search based solver for high school timetabling," Annals of Operations Research, Springer, vol. 239(1), pages 77-97, April.
    19. Fabian Dunke & Stefan Nickel, 2023. "A matheuristic for customized multi-level multi-criteria university timetabling," Annals of Operations Research, Springer, vol. 328(2), pages 1313-1348, September.
    20. Alejandro Cataldo & Juan-Carlos Ferrer & Jaime Miranda & Pablo A. Rey & Antoine Sauré, 2017. "An integer programming approach to curriculum-based examination timetabling," Annals of Operations Research, Springer, vol. 258(2), pages 369-393, November.
    21. Martin Geiger, 2012. "Applying the threshold accepting metaheuristic to curriculum based course timetabling," Annals of Operations Research, Springer, vol. 194(1), pages 189-202, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johnes, Jill, 2015. "Operational Research in education," European Journal of Operational Research, Elsevier, vol. 243(3), pages 683-696.
    2. Martin Geiger, 2012. "Applying the threshold accepting metaheuristic to curriculum based course timetabling," Annals of Operations Research, Springer, vol. 194(1), pages 189-202, April.
    3. De Causmaecker, Patrick & Demeester, Peter & Vanden Berghe, Greet, 2009. "A decomposed metaheuristic approach for a real-world university timetabling problem," European Journal of Operational Research, Elsevier, vol. 195(1), pages 307-318, May.
    4. Vermuyten, Hendrik & Lemmens, Stef & Marques, Inês & Beliën, Jeroen, 2016. "Developing compact course timetables with optimized student flows," European Journal of Operational Research, Elsevier, vol. 251(2), pages 651-661.
    5. R Qu & E K Burke, 2009. "Hybridizations within a graph-based hyper-heuristic framework for university timetabling problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(9), pages 1273-1285, September.
    6. Abdul Rahman, Syariza & Bargiela, Andrzej & Burke, Edmund K. & Özcan, Ender & McCollum, Barry & McMullan, Paul, 2014. "Adaptive linear combination of heuristic orderings in constructing examination timetables," European Journal of Operational Research, Elsevier, vol. 232(2), pages 287-297.
    7. Burke, E.K. & Eckersley, A.J. & McCollum, B. & Petrovic, S. & Qu, R., 2010. "Hybrid variable neighbourhood approaches to university exam timetabling," European Journal of Operational Research, Elsevier, vol. 206(1), pages 46-53, October.
    8. De Boeck, Liesje & Beliën, Jeroen & Creemers, Stefan, 2016. "A column generation approach for solving the examination-timetabling problemAuthor-Name: Woumans, Gert," European Journal of Operational Research, Elsevier, vol. 253(1), pages 178-194.
    9. Álvaro García-Sánchez & Araceli Hernández & Eduardo Caro & Gonzalo Jiménez, 2019. "Universidad Politécnica de Madrid Uses Integer Programming for Scheduling Weekly Assessment Activities," Interfaces, INFORMS, vol. 49(2), pages 104-116, March.
    10. J A Vázquez-Rodríguez & G Ochoa, 2011. "On the automatic discovery of variants of the NEH procedure for flow shop scheduling using genetic programming," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 381-396, February.
    11. Li, Jingpeng & Bai, Ruibin & Shen, Yindong & Qu, Rong, 2015. "Search with evolutionary ruin and stochastic rebuild: A theoretic framework and a case study on exam timetabling," European Journal of Operational Research, Elsevier, vol. 242(3), pages 798-806.
    12. Qu, Rong & Burke, Edmund K. & McCollum, Barry, 2009. "Adaptive automated construction of hybrid heuristics for exam timetabling and graph colouring problems," European Journal of Operational Research, Elsevier, vol. 198(2), pages 392-404, October.
    13. David Rea & Craig Froehle & Suzanne Masterson & Brian Stettler & Gregory Fermann & Arthur Pancioli, 2021. "Unequal but Fair: Incorporating Distributive Justice in Operational Allocation Models," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2304-2320, July.
    14. Karsu, Özlem & Morton, Alec, 2015. "Inequity averse optimization in operational research," European Journal of Operational Research, Elsevier, vol. 245(2), pages 343-359.
    15. Carlos Contreras Bolton & Gustavo Gatica & Víctor Parada, 2013. "Automatically Generated Algorithms for the Vertex Coloring Problem," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-9, March.
    16. Jacek Blazewicz & Edmund Burke & Graham Kendall & Wojciech Mruczkiewicz & Ceyda Oguz & Aleksandra Swiercz, 2013. "A hyper-heuristic approach to sequencing by hybridization of DNA sequences," Annals of Operations Research, Springer, vol. 207(1), pages 27-41, August.
    17. Song, Kwonsik & Kim, Sooyoung & Park, Moonseo & Lee, Hyun-Soo, 2017. "Energy efficiency-based course timetabling for university buildings," Energy, Elsevier, vol. 139(C), pages 394-405.
    18. Briskorn, Dirk & Horbach, Andrei, 2009. "A Lagrangian approach for minimum cost tournaments," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 647, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    19. Guillermo Durán, 2021. "Sports scheduling and other topics in sports analytics: a survey with special reference to Latin America," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 125-155, April.
    20. Jaeseob Han & Seung-Hyun Jeon & Gyeong-Ho Lee & Sangdon Park & Jun-Kyun Choi, 2023. "Power and Frequency Band Allocation Mechanisms for WPT System with Logarithmic-Based Nonlinear Energy Harvesting Model," Sustainability, MDPI, vol. 15(13), pages 1-27, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:200:y:2010:i:1:p:235-244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.