IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v49y2019i2p104-116.html
   My bibliography  Save this article

Universidad Politécnica de Madrid Uses Integer Programming for Scheduling Weekly Assessment Activities

Author

Listed:
  • Álvaro García-Sánchez

    (Business Administration and Statistics Department, Industrial Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain)

  • Araceli Hernández

    (Department of Automatics, Electrical and Electronics Engineering and Industrial Computing, Universidad Politécnica de Madrid, 28040 Madrid, Spain)

  • Eduardo Caro

    (Business Administration and Statistics Department, Industrial Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain)

  • Gonzalo Jiménez

    (Energy Engineering Department, Universidad Politécnica de Madrid, 28040 Madrid, Spain)

Abstract

The Bologna Declaration became the guiding document of the Bologna Process, which led to the creation of the European Higher Education Area (EHEA) to coordinate higher education across Europe. The Escuela Técnica Superior de Ingenieros Industriales (ETSII) of the Universidad Politécnica de Madrid adopted one of its pillars: a student-centered learning model. This new model requires the adaptation of existing docent methodologies and the development of tools to monitor student achievements by means of continuous assessment. The implementation of this approach in bachelor’s degree programs was especially complex because of the considerable number of students and subjects involved. To meet EHEA requirements, ETSII’s board of directors and the school’s academic committee designed and implemented a method to implement periodic assessment activities for all degree programs. This method entailed a large number of activities across all courses that had to be scheduled to ensure that all requirements would be met. The schedule was generated manually until the volume of activities increased such that manual scheduling was no longer viable. To address this problem, we implemented two integer programming models, which we have successfully applied since the 2013–2014 academic year.

Suggested Citation

  • Álvaro García-Sánchez & Araceli Hernández & Eduardo Caro & Gonzalo Jiménez, 2019. "Universidad Politécnica de Madrid Uses Integer Programming for Scheduling Weekly Assessment Activities," Interfaces, INFORMS, vol. 49(2), pages 104-116, March.
  • Handle: RePEc:inm:orinte:v:49:y:2019:i:2:p:104-116
    DOI: 10.1287/inte.2018.0975
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/inte.2018.0975
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.2018.0975?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nelishia Pillay, 2014. "A survey of school timetabling research," Annals of Operations Research, Springer, vol. 218(1), pages 261-293, July.
    2. Salem Al-Yakoob & Hanif Sherali & Mona Al-Jazzaf, 2010. "A mixed-integer mathematical modeling approach to exam timetabling," Computational Management Science, Springer, vol. 7(1), pages 19-46, January.
    3. Burke, E.K. & Eckersley, A.J. & McCollum, B. & Petrovic, S. & Qu, R., 2010. "Hybrid variable neighbourhood approaches to university exam timetabling," European Journal of Operational Research, Elsevier, vol. 206(1), pages 46-53, October.
    4. Turabieh, Hamza & Abdullah, Salwani, 2011. "An integrated hybrid approach to the examination timetabling problem," Omega, Elsevier, vol. 39(6), pages 598-607, December.
    5. Alejandro Cataldo & Juan-Carlos Ferrer & Jaime Miranda & Pablo A. Rey & Antoine Sauré, 2017. "An integer programming approach to curriculum-based examination timetabling," Annals of Operations Research, Springer, vol. 258(2), pages 369-393, November.
    6. Burke, Edmund K. & McCollum, Barry & Meisels, Amnon & Petrovic, Sanja & Qu, Rong, 2007. "A graph-based hyper-heuristic for educational timetabling problems," European Journal of Operational Research, Elsevier, vol. 176(1), pages 177-192, January.
    7. Kahar, M.N.M. & Kendall, G., 2010. "The examination timetabling problem at Universiti Malaysia Pahang: Comparison of a constructive heuristic with an existing software solution," European Journal of Operational Research, Elsevier, vol. 207(2), pages 557-565, December.
    8. De Boeck, Liesje & Beliën, Jeroen & Creemers, Stefan, 2016. "A column generation approach for solving the examination-timetabling problemAuthor-Name: Woumans, Gert," European Journal of Operational Research, Elsevier, vol. 253(1), pages 178-194.
    9. De Causmaecker, Patrick & Demeester, Peter & Vanden Berghe, Greet, 2009. "A decomposed metaheuristic approach for a real-world university timetabling problem," European Journal of Operational Research, Elsevier, vol. 195(1), pages 307-318, May.
    10. Gert Woumans & Liesje de Boeck & Jeroen Beliën & Stefan Creemers, 2016. "A column generation approach for solving the examination-timetabling problem," Post-Print hal-01744776, HAL.
    11. Christos Gogos & Panayiotis Alefragis & Efthymios Housos, 2012. "An improved multi-staged algorithmic process for the solution of the examination timetabling problem," Annals of Operations Research, Springer, vol. 194(1), pages 203-221, April.
    12. Edmund Burke & Nam Pham & Rong Qu & Jay Yellen, 2012. "Linear combinations of heuristics for examination timetabling," Annals of Operations Research, Springer, vol. 194(1), pages 89-109, April.
    13. Pillay, N. & Banzhaf, W., 2009. "A study of heuristic combinations for hyper-heuristic systems for the uncapacitated examination timetabling problem," European Journal of Operational Research, Elsevier, vol. 197(2), pages 482-491, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alejandro Cataldo & Juan-Carlos Ferrer & Jaime Miranda & Pablo A. Rey & Antoine Sauré, 2017. "An integer programming approach to curriculum-based examination timetabling," Annals of Operations Research, Springer, vol. 258(2), pages 369-393, November.
    2. Johnes, Jill, 2015. "Operational Research in education," European Journal of Operational Research, Elsevier, vol. 243(3), pages 683-696.
    3. Mats Carlsson & Sara Ceschia & Luca Gaspero & Rasmus Ørnstrup Mikkelsen & Andrea Schaerf & Thomas Jacob Riis Stidsen, 2023. "Exact and metaheuristic methods for a real-world examination timetabling problem," Journal of Scheduling, Springer, vol. 26(4), pages 353-367, August.
    4. Abdul Rahman, Syariza & Bargiela, Andrzej & Burke, Edmund K. & Özcan, Ender & McCollum, Barry & McMullan, Paul, 2014. "Adaptive linear combination of heuristic orderings in constructing examination timetables," European Journal of Operational Research, Elsevier, vol. 232(2), pages 287-297.
    5. Mohammed Al-Betar & Ahamad Khader & Iyad Doush, 2014. "Memetic techniques for examination timetabling," Annals of Operations Research, Springer, vol. 218(1), pages 23-50, July.
    6. De Boeck, Liesje & Beliën, Jeroen & Creemers, Stefan, 2016. "A column generation approach for solving the examination-timetabling problemAuthor-Name: Woumans, Gert," European Journal of Operational Research, Elsevier, vol. 253(1), pages 178-194.
    7. T. Godwin, 2022. "Obtaining quality business school examination timetable under heterogeneous elective selections through surrogacy," OPSEARCH, Springer;Operational Research Society of India, vol. 59(3), pages 1055-1093, September.
    8. Edmund Burke & Rong Qu & Amr Soghier, 2014. "Adaptive selection of heuristics for improving exam timetables," Annals of Operations Research, Springer, vol. 218(1), pages 129-145, July.
    9. Aslan, Ayse & Bakir, Ilke & Vis, Iris F.A., 2020. "A dynamic thompson sampling hyper-heuristic framework for learning activity planning in personalized learning," European Journal of Operational Research, Elsevier, vol. 286(2), pages 673-688.
    10. Ceschia, Sara & Di Gaspero, Luca & Schaerf, Andrea, 2023. "Educational timetabling: Problems, benchmarks, and state-of-the-art results," European Journal of Operational Research, Elsevier, vol. 308(1), pages 1-18.
    11. R. A. Oude Vrielink & E. A. Jansen & E. W. Hans & J. Hillegersberg, 2019. "Practices in timetabling in higher education institutions: a systematic review," Annals of Operations Research, Springer, vol. 275(1), pages 145-160, April.
    12. Barry McCollum & Paul McMullan & Andrew Parkes & Edmund Burke & Rong Qu, 2012. "A new model for automated examination timetabling," Annals of Operations Research, Springer, vol. 194(1), pages 291-315, April.
    13. Moritz Mühlenthaler & Rolf Wanka, 2016. "Fairness in academic course timetabling," Annals of Operations Research, Springer, vol. 239(1), pages 171-188, April.
    14. Pasquale Avella & Maurizio Boccia & Carlo Mannino & Sandro Viglione, 2022. "Practice Summary: Solving the External Candidates Exam Schedule in Norway," Interfaces, INFORMS, vol. 52(2), pages 226-231, March.
    15. Lagos, Felipe & Pereira, Jordi, 2024. "Multi-armed bandit-based hyper-heuristics for combinatorial optimization problems," European Journal of Operational Research, Elsevier, vol. 312(1), pages 70-91.
    16. Syariza Abdul-Rahman & Edmund Burke & Andrzej Bargiela & Barry McCollum & Ender Özcan, 2014. "A constructive approach to examination timetabling based on adaptive decomposition and ordering," Annals of Operations Research, Springer, vol. 218(1), pages 3-21, July.
    17. Vermuyten, Hendrik & Lemmens, Stef & Marques, Inês & Beliën, Jeroen, 2016. "Developing compact course timetables with optimized student flows," European Journal of Operational Research, Elsevier, vol. 251(2), pages 651-661.
    18. Nelishia Pillay, 2014. "A survey of school timetabling research," Annals of Operations Research, Springer, vol. 218(1), pages 261-293, July.
    19. Taha Arbaoui & Jean-Paul Boufflet & Aziz Moukrim, 2015. "Preprocessing and an improved MIP model for examination timetabling," Annals of Operations Research, Springer, vol. 229(1), pages 19-40, June.
    20. Martin Geiger, 2012. "Applying the threshold accepting metaheuristic to curriculum based course timetabling," Annals of Operations Research, Springer, vol. 194(1), pages 189-202, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:49:y:2019:i:2:p:104-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.