IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v312y2024i3p1024-1038.html
   My bibliography  Save this article

On the zero-inventory-ordering policy in the inventory routing problem

Author

Listed:
  • Diabat, Ali
  • Bianchessi, Nicola
  • Archetti, Claudia

Abstract

The Inventory Routing Problem (IRP) aims at determining the best distribution plan of a certain commodity from a supplier to a set of customers over a given planning horizon. Customers face a per period consumption and the plan has to be such that they can always satisfy it. The aim is to minimize the total cost of the distribution plan, which is given by the sum of routing and inventory holding cost. A replenishment strategy that has become common in the recent literature is the Maximum Level (ML) strategy, where no restriction is imposed on when the customers are visited and what the quantity delivered is, provided that a maximum inventory level at each customer (corresponding to the customer′s warehouse capacity) is not exceeded. This strategy is highly flexible and this clearly provides cost advantages. However, it might also create inconveniences to customers, who might receive visits when their inventory level is still relatively high. Towards addressing this issue, we study in this paper the Zero-Inventory-Ordering (ZIO) replenishment strategy for the IRP, where customers can be served only when their inventory level is zero. The aim is to analyze the impact of a policy which is more customer-orientedthan the ML. The analysis is made in terms of advantages from the customers′ perspective and disadvantages from the system perspective, i.e., increase of the total cost. We propose a formulation based on two-commodity flow variables, and strengthen it through new valid inequalities tailored for our problem as well as with valid inequalities inherited from the literature on the IRP. We develop branch-and-cut algorithms and experimentally compare the ZIO and ML policies on benchmark IRP instances. The results show that the application of the ZIO policy allows to reduce the inventory costs at the customers without substantially increasing, or even decreasing, the number of visits to them. This comes at the expense of an increase of the total costs. Results also show that the increase in total cost is inversely proportional to the relative weight of the inventory costs at the customers. More precisely, inventory costs at customers are decreased by more than 20% on average while total cost increases, on average, by 17.6% when the inventory costs are high and of 9.2% when inventory costs are low. In addition, we generated new sets of instances in which inventory costs are more aligned with practical applications with respect to what happens in the benchmark IRP instances. Results show how the ZIO policy consistently provides solutions where the inventory cost to customers is lower than the one associated with the ML policy. Also, the gap in total cost reduces when the inventory cost at customers increases.

Suggested Citation

  • Diabat, Ali & Bianchessi, Nicola & Archetti, Claudia, 2024. "On the zero-inventory-ordering policy in the inventory routing problem," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1024-1038.
  • Handle: RePEc:eee:ejores:v:312:y:2024:i:3:p:1024-1038
    DOI: 10.1016/j.ejor.2023.07.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723005519
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.07.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ann Melissa Campbell & Martin W. P. Savelsbergh, 2004. "A Decomposition Approach for the Inventory-Routing Problem," Transportation Science, INFORMS, vol. 38(4), pages 488-502, November.
    2. Claudia Archetti & Natashia Boland & Grazia Speranza, 2017. "A Matheuristic for the Multivehicle Inventory Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 377-387, August.
    3. Guy Desaulniers & Jørgen G. Rakke & Leandro C. Coelho, 2016. "A Branch-Price-and-Cut Algorithm for the Inventory-Routing Problem," Transportation Science, INFORMS, vol. 50(3), pages 1060-1076, August.
    4. Lap Mui Ann Chan & Ana Muriel & Zuo-Jun Max Shen & David Simchi-Levi & Chung-Piaw Teo, 2002. "Effective Zero-Inventory-Ordering Policies for the Single-Warehouse Multiretailer Problem with Piecewise Linear Cost Structures," Management Science, INFORMS, vol. 48(11), pages 1446-1460, November.
    5. Harvey M. Wagner & Thomson M. Whitin, 1958. "Dynamic Version of the Economic Lot Size Model," Management Science, INFORMS, vol. 5(1), pages 89-96, October.
    6. Leandro C. Coelho & Gilbert Laporte, 2015. "An optimised target-level inventory replenishment policy for vendor-managed inventory systems," International Journal of Production Research, Taylor & Francis Journals, vol. 53(12), pages 3651-3660, June.
    7. Raa, Birger & Aghezzaf, El-Houssaine, 2009. "A practical solution approach for the cyclic inventory routing problem," European Journal of Operational Research, Elsevier, vol. 192(2), pages 429-441, January.
    8. Ali Diabat & Claudia Archetti & Waleed Najy, 2021. "The Fixed-Partition Policy Inventory Routing Problem," Transportation Science, INFORMS, vol. 55(2), pages 353-370, March.
    9. El-Houssaine Aghezzaf & Yiqing Zhong & Birger Raa & Manel Mateo, 2012. "Analysis of the single-vehicle cyclic inventory routing problem," International Journal of Systems Science, Taylor & Francis Journals, vol. 43(11), pages 2040-2049.
    10. Boudia, M. & Prins, C., 2009. "A memetic algorithm with dynamic population management for an integrated production-distribution problem," European Journal of Operational Research, Elsevier, vol. 195(3), pages 703-715, June.
    11. Li, Jianxiang & Chen, Haoxun & Chu, Feng, 2010. "Performance evaluation of distribution strategies for the inventory routing problem," European Journal of Operational Research, Elsevier, vol. 202(2), pages 412-419, April.
    12. Coelho, Leandro C. & Laporte, Gilbert, 2014. "Improved solutions for inventory-routing problems through valid inequalities and input ordering," International Journal of Production Economics, Elsevier, vol. 155(C), pages 391-397.
    13. Pasquale Avella & Maurizio Boccia & Laurence A. Wolsey, 2018. "Single-period cutting planes for inventory routing problems," LIDAM Reprints CORE 3009, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    14. Philip Kaminsky & David Simchi-Levi, 1998. "Probabilistic Analysis and Practical Algorithms for the Flow Shop Weighted Completion Time Problem," Operations Research, INFORMS, vol. 46(6), pages 872-882, December.
    15. Pasquale Avella & Maurizio Boccia & Laurence A. Wolsey, 2018. "Single-Period Cutting Planes for Inventory Routing Problems," Transportation Science, INFORMS, vol. 52(3), pages 497-508, June.
    16. Claudia Archetti & Luca Bertazzi & Gilbert Laporte & Maria Grazia Speranza, 2007. "A Branch-and-Cut Algorithm for a Vendor-Managed Inventory-Routing Problem," Transportation Science, INFORMS, vol. 41(3), pages 382-391, August.
    17. Lap Mui Ann Chan & Ana Muriel & Zuo-Jun Shen & David Simchi-Levi, 2002. "On the Effectiveness of Zero-Inventory-Ordering Policies for the Economic Lot-Sizing Model with a Class of Piecewise Linear Cost Structures," Operations Research, INFORMS, vol. 50(6), pages 1058-1067, December.
    18. Chen, Jing & Dong, Ming & Xu, Lei, 2018. "A perishable product shipment consolidation model considering freshness-keeping effort," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 56-86.
    19. Manousakis, Eleftherios & Repoussis, Panagiotis & Zachariadis, Emmanouil & Tarantilis, Christos, 2021. "Improved branch-and-cut for the Inventory Routing Problem based on a two-commodity flow formulation," European Journal of Operational Research, Elsevier, vol. 290(3), pages 870-885.
    20. Skålnes, Jørgen & Andersson, Henrik & Desaulniers, Guy & Stålhane, Magnus, 2022. "An improved formulation for the inventory routing problem with time-varying demands," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1189-1201.
    21. Aksen, Deniz & Kaya, Onur & Sibel Salman, F. & Tüncel, Özge, 2014. "An adaptive large neighborhood search algorithm for a selective and periodic inventory routing problem," European Journal of Operational Research, Elsevier, vol. 239(2), pages 413-426.
    22. Yossiri Adulyasak & Jean-François Cordeau & Raf Jans, 2014. "Formulations and Branch-and-Cut Algorithms for Multivehicle Production and Inventory Routing Problems," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 103-120, February.
    23. Claudia Archetti & Luca Bertazzi & Alain Hertz & M. Grazia Speranza, 2012. "A Hybrid Heuristic for an Inventory Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 101-116, February.
    24. Iman Dayarian & Guy Desaulniers, 2019. "A Branch-Price-and-Cut Algorithm for a Production-Routing Problem with Short-Life-Span Products," Transportation Science, INFORMS, vol. 53(3), pages 829-849, May.
    25. Masoud Chitsaz & Jean-François Cordeau & Raf Jans, 2019. "A Unified Decomposition Matheuristic for Assembly, Production, and Inventory Routing," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 134-152, February.
    26. Avci, Mustafa & Yildiz, Seyda Topaloglu, 2019. "A matheuristic solution approach for the production routing problem with visit spacing policy," European Journal of Operational Research, Elsevier, vol. 279(2), pages 572-588.
    27. Vishal Gaur & Marshall L. Fisher, 2004. "A Periodic Inventory Routing Problem at a Supermarket Chain," Operations Research, INFORMS, vol. 52(6), pages 813-822, December.
    28. Lap Mui Ann Chan & Awi Federgruen & David Simchi-Levi, 1998. "Probabilistic Analyses and Practical Algorithms for Inventory-Routing Models," Operations Research, INFORMS, vol. 46(1), pages 96-106, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manousakis, Eleftherios & Repoussis, Panagiotis & Zachariadis, Emmanouil & Tarantilis, Christos, 2021. "Improved branch-and-cut for the Inventory Routing Problem based on a two-commodity flow formulation," European Journal of Operational Research, Elsevier, vol. 290(3), pages 870-885.
    2. Ziye Tang & Yang Jiao & R. Ravi, 2022. "Combinatorial Heuristics for Inventory Routing Problems," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 370-384, January.
    3. Archetti, Claudia & Ljubić, Ivana, 2022. "Comparison of formulations for the Inventory Routing Problem," European Journal of Operational Research, Elsevier, vol. 303(3), pages 997-1008.
    4. Skålnes, Jørgen & Andersson, Henrik & Desaulniers, Guy & Stålhane, Magnus, 2022. "An improved formulation for the inventory routing problem with time-varying demands," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1189-1201.
    5. Cárdenas-Barrón, Leopoldo Eduardo & González-Velarde, José Luis & Treviño-Garza, Gerardo & Garza-Nuñez, Dagoberto, 2019. "Heuristic algorithm based on reduce and optimize approach for a selective and periodic inventory routing problem in a waste vegetable oil collection environment," International Journal of Production Economics, Elsevier, vol. 211(C), pages 44-59.
    6. Bertazzi, Luca & Chua, Geoffrey A. & Laganà, Demetrio & Paradiso, Rosario, 2022. "Analysis of effective sets of routes for the split-delivery periodic inventory routing problem," European Journal of Operational Research, Elsevier, vol. 298(2), pages 463-477.
    7. Bertazzi, Luca & Laganà, Demetrio & Ohlmann, Jeffrey W. & Paradiso, Rosario, 2020. "An exact approach for cyclic inbound inventory routing in a level production system," European Journal of Operational Research, Elsevier, vol. 283(3), pages 915-928.
    8. Bertazzi, Luca & Coelho, Leandro C. & De Maio, Annarita & Laganà, Demetrio, 2019. "A matheuristic algorithm for the multi-depot inventory routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 524-544.
    9. Mohd Kamarul Irwan Abdul Rahim & El-Houssaine Aghezzaf & Veronique Limère & Birger Raa, 2016. "Analysing the effectiveness of vendor-managed inventory in a single-warehouse, multiple-retailer system," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(8), pages 1953-1965, June.
    10. Ahmed Kheiri, 2020. "Heuristic Sequence Selection for Inventory Routing Problem," Transportation Science, INFORMS, vol. 54(2), pages 302-312, March.
    11. Zhenzhen Zhang & Zhixing Luo & Roberto Baldacci & Andrew Lim, 2021. "A Benders Decomposition Approach for the Multivehicle Production Routing Problem with Order-up-to-Level Policy," Transportation Science, INFORMS, vol. 55(1), pages 160-178, 1-2.
    12. Leandro C. Coelho & Jean-François Cordeau & Gilbert Laporte, 2014. "Thirty Years of Inventory Routing," Transportation Science, INFORMS, vol. 48(1), pages 1-19, February.
    13. Hu, Weihong & Toriello, Alejandro & Dessouky, Maged, 2018. "Integrated inventory routing and freight consolidation for perishable goods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 548-560.
    14. Jia, Menglei & Chen, Feng, 2023. "Upward scalable vehicle routing problem of automobile inbound logistics with pickup flexibility," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    15. Sonntag, Danja R. & Schrotenboer, Albert H. & Kiesmüller, Gudrun P., 2023. "Stochastic inventory routing with time-based shipment consolidation," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1186-1201.
    16. Masoud Chitsaz & Jean-François Cordeau & Raf Jans, 2019. "A Unified Decomposition Matheuristic for Assembly, Production, and Inventory Routing," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 134-152, February.
    17. Qiu, Yuzhuo & Zhou, Dan & Du, Yanan & Liu, Jie & Pardalos, Panos M. & Qiao, Jun, 2021. "The two-echelon production routing problem with cross-docking satellites," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    18. Schenekemberg, Cleder M. & Scarpin, Cassius T. & Pécora, José E. & Guimarães, Thiago A. & Coelho, Leandro C., 2021. "The two-echelon production-routing problem," European Journal of Operational Research, Elsevier, vol. 288(2), pages 436-449.
    19. Song, Ruidian & Zhao, Lei & Van Woensel, Tom & Fransoo, Jan C., 2019. "Coordinated delivery in urban retail," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 122-148.
    20. Manousakis, Eleftherios G. & Kasapidis, Grigoris A. & Kiranoudis, Chris T. & Zachariadis, Emmanouil E., 2022. "An infeasible space exploring matheuristic for the Production Routing Problem," European Journal of Operational Research, Elsevier, vol. 298(2), pages 478-495.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:312:y:2024:i:3:p:1024-1038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.