IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v197y2012i1p135-15810.1007-s10479-010-0772-4.html
   My bibliography  Save this article

Large scale stochastic inventory routing problems with split delivery and service level constraints

Author

Listed:
  • Yugang Yu
  • Chengbin Chu
  • Haoxun Chen
  • Feng Chu

Abstract

A stochastic inventory routing problem (SIRP) is typically the combination of stochastic inventory control problems and NP-hard vehicle routing problems, which determines delivery volumes to the customers that the depot serves in each period, and vehicle routes to deliver the volumes. This paper aims to solve a large scale multi-period SIRP with split delivery (SIRPSD) where a customer’s delivery in each period can be split and satisfied by multiple vehicle routes if necessary. This paper considers SIRPSD under the multi-criteria of the total inventory and transportation costs, and the service levels of customers. The total inventory and transportation cost is considered as the objective of the problem to minimize, while the service levels of the warehouses and the customers are satisfied by some imposed constraints and can be adjusted according to practical requests. In order to tackle the SIRPSD with notorious computational complexity, we first propose an approximate model, which significantly reduces the number of decision variables compared to its corresponding exact model. We then develop a hybrid approach that combines the linearization of nonlinear constraints, the decomposition of the model into sub-models with Lagrangian relaxation, and a partial linearization approach for a sub model. A near optimal solution of the model found by the approach is used to construct a near optimal solution of the SIRPSD. Randomly generated instances of the problem with up to 200 customers and 5 periods and about 400 thousands decision variables where half of them are integer are examined by numerical experiments. Our approach can obtain high quality near optimal solutions within a reasonable amount of computation time on an ordinary PC. Copyright The Author(s) 2012

Suggested Citation

  • Yugang Yu & Chengbin Chu & Haoxun Chen & Feng Chu, 2012. "Large scale stochastic inventory routing problems with split delivery and service level constraints," Annals of Operations Research, Springer, vol. 197(1), pages 135-158, August.
  • Handle: RePEc:spr:annopr:v:197:y:2012:i:1:p:135-158:10.1007/s10479-010-0772-4
    DOI: 10.1007/s10479-010-0772-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-010-0772-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-010-0772-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anton J. Kleywegt & Vijay S. Nori & Martin W. P. Savelsbergh, 2002. "The Stochastic Inventory Routing Problem with Direct Deliveries," Transportation Science, INFORMS, vol. 36(1), pages 94-118, February.
    2. Dror, Moshe & Trudeau, Pierre, 1996. "Cash flow optimization in delivery scheduling," European Journal of Operational Research, Elsevier, vol. 88(3), pages 504-515, February.
    3. Leroy B. Schwarz & James E. Ward & Xin Zhai, 2006. "On the Interactions Between Routing and Inventory-Management Policies in a One-Warehouse N-Retailer Distribution System," Manufacturing & Service Operations Management, INFORMS, vol. 8(3), pages 253-272, September.
    4. J. M. Belenguer & M. C. Martinez & E. Mota, 2000. "A Lower Bound for the Split Delivery Vehicle Routing Problem," Operations Research, INFORMS, vol. 48(5), pages 801-810, October.
    5. Moshe Dror & Michael Ball, 1987. "Inventory/routing: Reduction from an annual to a short‐period problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(6), pages 891-905, December.
    6. Claudia Archetti & M. Grazia Speranza & Martin W. P. Savelsbergh, 2008. "An Optimization-Based Heuristic for the Split Delivery Vehicle Routing Problem," Transportation Science, INFORMS, vol. 42(1), pages 22-31, February.
    7. Jin, Mingzhou & Liu, Kai & Bowden, Royce O., 2007. "A two-stage algorithm with valid inequalities for the split delivery vehicle routing problem," International Journal of Production Economics, Elsevier, vol. 105(1), pages 228-242, January.
    8. Pierre Trudeau & Moshe Dror, 1992. "Stochastic Inventory Routing: Route Design with Stockouts and Route Failures," Transportation Science, INFORMS, vol. 26(3), pages 171-184, August.
    9. Moshe Dror & Pierre Trudeau, 1990. "Split delivery routing," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(3), pages 383-402, June.
    10. Lars Magnus Hvattum & Arne Løkketangen & Gilbert Laporte, 2009. "Scenario Tree-Based Heuristics for Stochastic Inventory-Routing Problems," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 268-285, May.
    11. Haoxun Chen, 2007. "A Lagrangian Relaxation approach for production planning with demand uncertainty," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 1(4), pages 370-390.
    12. Claudia Archetti & Martin W. P. Savelsbergh & M. Grazia Speranza, 2006. "Worst-Case Analysis for Split Delivery Vehicle Routing Problems," Transportation Science, INFORMS, vol. 40(2), pages 226-234, May.
    13. Ayeley P. Tchangani, 2009. "Evaluation Model For Multiattributes–Multiagents Decision Making: Satisficing Game Approach," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 73-91.
    14. Yi Peng & Gang Kou & Yong Shi & Zhengxin Chen, 2008. "A Descriptive Framework For The Field Of Data Mining And Knowledge Discovery," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 639-682.
    15. Murat Köksalan & Ceren Tuncer, 2009. "A Dea-Based Approach To Ranking Multi-Criteria Alternatives," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 29-54.
    16. Daniel Adelman, 2004. "A Price-Directed Approach to Stochastic Inventory/Routing," Operations Research, INFORMS, vol. 52(4), pages 499-514, August.
    17. Patrick Jaillet & Jonathan F. Bard & Liu Huang & Moshe Dror, 2002. "Delivery Cost Approximations for Inventory Routing Problems in a Rolling Horizon Framework," Transportation Science, INFORMS, vol. 36(3), pages 292-300, August.
    18. Han-Lin Li & Li-Ching Ma, 2008. "Ranking Decision Alternatives By Integrated Dea, Ahp And Gower Plot Techniques," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 241-258.
    19. Yu, Yugang & Chen, Haoxun & Chu, Feng, 2008. "A new model and hybrid approach for large scale inventory routing problems," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1022-1040, September.
    20. Yu, Yugang & Chu, Feng & Chen, Haoxun, 2009. "A Stackelberg game and its improvement in a VMI system with a manufacturing vendor," European Journal of Operational Research, Elsevier, vol. 192(3), pages 929-948, February.
    21. Yu, Yugang & Chu, Feng & Chen, Haoxun, 2007. "A note on coordination of production and distribution planning," European Journal of Operational Research, Elsevier, vol. 177(1), pages 626-629, February.
    22. F. Fumero & C. Vercellis, 1999. "Synchronized Development of Production, Inventory, and Distribution Schedules," Transportation Science, INFORMS, vol. 33(3), pages 330-340, August.
    23. Anton J. Kleywegt & Vijay S. Nori & Martin W. P. Savelsbergh, 2004. "Dynamic Programming Approximations for a Stochastic Inventory Routing Problem," Transportation Science, INFORMS, vol. 38(1), pages 42-70, February.
    24. Walter J. Bell & Louis M. Dalberto & Marshall L. Fisher & Arnold J. Greenfield & R. Jaikumar & Pradeep Kedia & Robert G. Mack & Paul J. Prutzman, 1983. "Improving the Distribution of Industrial Gases with an On-Line Computerized Routing and Scheduling Optimizer," Interfaces, INFORMS, vol. 13(6), pages 4-23, December.
    25. Awi Federgruen & Paul Zipkin, 1984. "A Combined Vehicle Routing and Inventory Allocation Problem," Operations Research, INFORMS, vol. 32(5), pages 1019-1037, October.
    26. Miguel A. Lejeune & Andrzej Ruszczyński, 2007. "An Efficient Trajectory Method for Probabilistic Production-Inventory-Distribution Problems," Operations Research, INFORMS, vol. 55(2), pages 378-394, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alvarez, Aldair & Cordeau, Jean-François & Jans, Raf & Munari, Pedro & Morabito, Reinaldo, 2021. "Inventory routing under stochastic supply and demand," Omega, Elsevier, vol. 102(C).
    2. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    3. Pourya Pourhejazy & Oh Kyoung Kwon, 2016. "The New Generation of Operations Research Methods in Supply Chain Optimization: A Review," Sustainability, MDPI, vol. 8(10), pages 1-23, October.
    4. Song, Ruidian & Zhao, Lei & Van Woensel, Tom & Fransoo, Jan C., 2019. "Coordinated delivery in urban retail," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 122-148.
    5. Fatemeh Sabouhi & Ali Bozorgi-Amiri & Mohammad Moshref-Javadi & Mehdi Heydari, 2019. "An integrated routing and scheduling model for evacuation and commodity distribution in large-scale disaster relief operations: a case study," Annals of Operations Research, Springer, vol. 283(1), pages 643-677, December.
    6. Rahimi, Mohammad & Baboli, Armand & Rekik, Yacine, 2017. "Multi-objective inventory routing problem: A stochastic model to consider profit, service level and green criteria," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 59-83.
    7. Soysal, Mehmet & Bloemhof-Ruwaard, Jacqueline M. & Haijema, Rene & van der Vorst, Jack G.A.J., 2015. "Modeling an Inventory Routing Problem for perishable products with environmental considerations and demand uncertainty," International Journal of Production Economics, Elsevier, vol. 164(C), pages 118-133.
    8. Yves Crama & Mahmood Rezaei & Martin Savelsbergh & Tom Van Woensel, 2018. "Stochastic Inventory Routing for Perishable Products," Transportation Science, INFORMS, vol. 52(3), pages 526-546, June.
    9. Bertazzi, Luca & Bosco, Adamo & Laganà, Demetrio, 2015. "Managing stochastic demand in an Inventory Routing Problem with transportation procurement," Omega, Elsevier, vol. 56(C), pages 112-121.
    10. Raa, Birger & Aouam, Tarik, 2021. "Multi-vehicle stochastic cyclic inventory routing with guaranteed replenishments," International Journal of Production Economics, Elsevier, vol. 234(C).
    11. Toni Greif & Nikolai Stein & Christoph M. Flath, 2023. "Information Value Analysis for Real-Time Silo Fill-Level Monitoring," Interfaces, INFORMS, vol. 53(4), pages 283-294, July.
    12. Rossi, Roberto & Tomasella, Maurizio & Martin-Barragan, Belen & Embley, Tim & Walsh, Christopher & Langston, Matthew, 2019. "The Dynamic Bowser Routing Problem," European Journal of Operational Research, Elsevier, vol. 275(1), pages 108-126.
    13. Emre Çankaya & Ali Ekici & Okan Örsan Özener, 2019. "Humanitarian relief supplies distribution: an application of inventory routing problem," Annals of Operations Research, Springer, vol. 283(1), pages 119-141, December.
    14. Raa, Birger, 2015. "Fleet optimization for cyclic inventory routing problems," International Journal of Production Economics, Elsevier, vol. 160(C), pages 172-181.
    15. Vidović, Milorad & Popović, Dražen & Ratković, Branislava, 2014. "Mixed integer and heuristics model for the inventory routing problem in fuel delivery," International Journal of Production Economics, Elsevier, vol. 147(PC), pages 593-604.
    16. Jafarian, Ahmad & Asgari, Nasrin & Mohri, Seyed Sina & Fatemi-Sadr, Elham & Farahani, Reza Zanjirani, 2019. "The inventory-routing problem subject to vehicle failure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 254-294.
    17. Liu, Ming & Liu, Xin & Chu, Feng & Zheng, Feifeng & Chu, Chengbin, 2019. "Distributionally robust inventory routing problem to maximize the service level under limited budget," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 190-211.
    18. Raa, Birger & Aouam, Tarik, 2023. "A shortfall modelling-based solution approach for stochastic cyclic inventory routing," European Journal of Operational Research, Elsevier, vol. 305(2), pages 674-684.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leandro C. Coelho & Jean-François Cordeau & Gilbert Laporte, 2014. "Thirty Years of Inventory Routing," Transportation Science, INFORMS, vol. 48(1), pages 1-19, February.
    2. Jin-Hwa Song & Martin Savelsbergh, 2007. "Performance Measurement for Inventory Routing," Transportation Science, INFORMS, vol. 41(1), pages 44-54, February.
    3. Yu, Y. & Chu, C. & Chen, H.X. & Chu, F., 2010. "Linearization and Decomposition Methods for Large Scale Stochastic Inventory Routing Problem with Service Level Constraints," ERIM Report Series Research in Management ERS-2010-008-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    4. Cárdenas-Barrón, Leopoldo Eduardo & González-Velarde, José Luis & Treviño-Garza, Gerardo & Garza-Nuñez, Dagoberto, 2019. "Heuristic algorithm based on reduce and optimize approach for a selective and periodic inventory routing problem in a waste vegetable oil collection environment," International Journal of Production Economics, Elsevier, vol. 211(C), pages 44-59.
    5. Jeffrey W. Ohlmann & Michael J. Fry & Barrett W. Thomas, 2008. "Route Design for Lean Production Systems," Transportation Science, INFORMS, vol. 42(3), pages 352-370, August.
    6. Ketzenberg, Michael E. & Metters, Richard D., 2020. "Adapting operations to new information technology: A failed “internet of things” application," Omega, Elsevier, vol. 92(C).
    7. Yu, Yugang & Chen, Haoxun & Chu, Feng, 2008. "A new model and hybrid approach for large scale inventory routing problems," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1022-1040, September.
    8. Yves Crama & Mahmood Rezaei & Martin Savelsbergh & Tom Van Woensel, 2018. "Stochastic Inventory Routing for Perishable Products," Transportation Science, INFORMS, vol. 52(3), pages 526-546, June.
    9. Anton J. Kleywegt & Vijay S. Nori & Martin W. P. Savelsbergh, 2002. "The Stochastic Inventory Routing Problem with Direct Deliveries," Transportation Science, INFORMS, vol. 36(1), pages 94-118, February.
    10. Daniel Adelman, 2004. "A Price-Directed Approach to Stochastic Inventory/Routing," Operations Research, INFORMS, vol. 52(4), pages 499-514, August.
    11. Markov, Iliya & Bierlaire, Michel & Cordeau, Jean-François & Maknoon, Yousef & Varone, Sacha, 2018. "A unified framework for rich routing problems with stochastic demands," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 213-240.
    12. Mirzapour Al-e-hashem, Seyed M.J. & Rekik, Yacine & Mohammadi Hoseinhajlou, Ebrahim, 2019. "A hybrid L-shaped method to solve a bi-objective stochastic transshipment-enabled inventory routing problem," International Journal of Production Economics, Elsevier, vol. 209(C), pages 381-398.
    13. Oğuz Solyalı & Haldun Süral, 2011. "A Branch-and-Cut Algorithm Using a Strong Formulation and an A Priori Tour-Based Heuristic for an Inventory-Routing Problem," Transportation Science, INFORMS, vol. 45(3), pages 335-345, August.
    14. Sonntag, Danja R. & Schrotenboer, Albert H. & Kiesmüller, Gudrun P., 2023. "Stochastic inventory routing with time-based shipment consolidation," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1186-1201.
    15. Oğuz Solyalı & Jean-François Cordeau & Gilbert Laporte, 2012. "Robust Inventory Routing Under Demand Uncertainty," Transportation Science, INFORMS, vol. 46(3), pages 327-340, August.
    16. Rossi, Roberto & Tomasella, Maurizio & Martin-Barragan, Belen & Embley, Tim & Walsh, Christopher & Langston, Matthew, 2019. "The Dynamic Bowser Routing Problem," European Journal of Operational Research, Elsevier, vol. 275(1), pages 108-126.
    17. Yossiri Adulyasak & Jean-François Cordeau & Raf Jans, 2015. "Benders Decomposition for Production Routing Under Demand Uncertainty," Operations Research, INFORMS, vol. 63(4), pages 851-867, August.
    18. Ali Ekici & Okan Örsan Özener & Gültekin Kuyzu, 2015. "Cyclic Delivery Schedules for an Inventory Routing Problem," Transportation Science, INFORMS, vol. 49(4), pages 817-829, November.
    19. Sayarshad, Hamid R. & Gao, H. Oliver, 2018. "A non-myopic dynamic inventory routing and pricing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 83-98.
    20. Leonardo Berbotto & Sergio García & Francisco Nogales, 2014. "A Randomized Granular Tabu Search heuristic for the split delivery vehicle routing problem," Annals of Operations Research, Springer, vol. 222(1), pages 153-173, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:197:y:2012:i:1:p:135-158:10.1007/s10479-010-0772-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.