IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v92y2020ics0305048319303184.html
   My bibliography  Save this article

Adapting operations to new information technology: A failed “internet of things” application

Author

Listed:
  • Ketzenberg, Michael E.
  • Metters, Richard D.

Abstract

Our setting is the secure data destruction industry in which company trucks travel to distant customer sites to pick up outdated documents containing sensitive information (e.g. social security numbers). Outdated documents are stored in locked containers to be shredded, rather than simply recycled, by the secure data destruction service provider. Currently, no client site inventory level information is available. Due to the lack of inventory information, nearly a quarter of client site visits are wasted as there is no inventory to pick up. Another quarter of client site visits arrive too late. To improve operational efficiency, the firm invented an electronic device to make the containers at customer sites a part of the “Internet of Things” - the containers would be able to remotely transmit inventory level information, thus providing the opportunity for just-in-time inventory pickup. Utilizing this information requires a re-structuring of industry operations from fixed scheduled pickups to dynamic routing. Through heuristic creation and robust testing, we examine the conditions in which the Internet of Things application under consideration would be useful or yield minimal gains. Ultimately, the firm decided not to implement the application as the costs of maintenance and the operational re-structuring outweigh potential gains. Our study has implications for firms that are considering to explore Internet of Things to improve their operations.

Suggested Citation

  • Ketzenberg, Michael E. & Metters, Richard D., 2020. "Adapting operations to new information technology: A failed “internet of things” application," Omega, Elsevier, vol. 92(C).
  • Handle: RePEc:eee:jomega:v:92:y:2020:i:c:s0305048319303184
    DOI: 10.1016/j.omega.2019.102152
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048319303184
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2019.102152?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yossi Aviv, 2002. "Gaining Benefits from Joint Forecasting and Replenishment Processes: The Case of Auto-Correlated Demand," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 55-74, December.
    2. Arthur F. Veinott, Jr. & Harvey M. Wagner, 1965. "Computing Optimal (s, S) Inventory Policies," Management Science, INFORMS, vol. 11(5), pages 525-552, March.
    3. Moshe Dror & Michael Ball, 1987. "Inventory/routing: Reduction from an annual to a short‐period problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(6), pages 891-905, December.
    4. Patrick Jaillet & Jonathan F. Bard & Liu Huang & Moshe Dror, 2002. "Delivery Cost Approximations for Inventory Routing Problems in a Rolling Horizon Framework," Transportation Science, INFORMS, vol. 36(3), pages 292-300, August.
    5. Walter J. Bell & Louis M. Dalberto & Marshall L. Fisher & Arnold J. Greenfield & R. Jaikumar & Pradeep Kedia & Robert G. Mack & Paul J. Prutzman, 1983. "Improving the Distribution of Industrial Gases with an On-Line Computerized Routing and Scheduling Optimizer," Interfaces, INFORMS, vol. 13(6), pages 4-23, December.
    6. Lars Magnus Hvattum & Arne Løkketangen & Gilbert Laporte, 2009. "Scenario Tree-Based Heuristics for Stochastic Inventory-Routing Problems," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 268-285, May.
    7. Alan S. Minkoff, 1993. "A Markov Decision Model and Decomposition Heuristic for Dynamic Vehicle Dispatching," Operations Research, INFORMS, vol. 41(1), pages 77-90, February.
    8. J Privé & J Renaud & F Boctor & G Laporte, 2006. "Solving a vehicle-routing problem arising in soft-drink distribution," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(9), pages 1045-1052, September.
    9. D. Beyer & S. P. Sethi, 1999. "The Classical Average-Cost Inventory Models of Iglehart and Veinott–Wagner Revisited," Journal of Optimization Theory and Applications, Springer, vol. 101(3), pages 523-555, June.
    10. Ki Ling Cheung & Hau L. Lee, 2002. "The Inventory Benefit of Shipment Coordination and Stock Rebalancing in a Supply Chain," Management Science, INFORMS, vol. 48(2), pages 300-306, February.
    11. Narendra Agrawal & Stephen A. Smith, 1996. "Estimating negative binomial demand for retail inventory management with unobservable lost sales," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(6), pages 839-861, September.
    12. Anton J. Kleywegt & Vijay S. Nori & Martin W. P. Savelsbergh, 2004. "Dynamic Programming Approximations for a Stochastic Inventory Routing Problem," Transportation Science, INFORMS, vol. 38(1), pages 42-70, February.
    13. Li Chen & Hau L. Lee, 2009. "Information Sharing and Order Variability Control Under a Generalized Demand Model," Management Science, INFORMS, vol. 55(5), pages 781-797, May.
    14. Anton J. Kleywegt & Vijay S. Nori & Martin W. P. Savelsbergh, 2002. "The Stochastic Inventory Routing Problem with Direct Deliveries," Transportation Science, INFORMS, vol. 36(1), pages 94-118, February.
    15. Ananth. V. Iyer & Jianming Ye, 2000. "Assessing the Value of Information Sharing in a Promotional Retail Environment," Manufacturing & Service Operations Management, INFORMS, vol. 2(2), pages 128-143, February.
    16. Wen-Huei Yang & Kamlesh Mathur & Ronald H. Ballou, 2000. "Stochastic Vehicle Routing Problem with Restocking," Transportation Science, INFORMS, vol. 34(1), pages 99-112, February.
    17. Hemmelmayr, Vera & Doerner, Karl F. & Hartl, Richard F. & Savelsbergh, Martin W.P., 2010. "Vendor managed inventory for environments with stochastic product usage," European Journal of Operational Research, Elsevier, vol. 202(3), pages 686-695, May.
    18. Rema Hariharan & Paul Zipkin, 1995. "Customer-Order Information, Leadtimes, and Inventories," Management Science, INFORMS, vol. 41(10), pages 1599-1607, October.
    19. David Simchi‐Levi & Yao Zhao, 2003. "The value of information sharing in a two‐stage supply chain with production capacity constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(8), pages 888-916, December.
    20. Awi Federgruen & Paul Zipkin, 1984. "A Combined Vehicle Routing and Inventory Allocation Problem," Operations Research, INFORMS, vol. 32(5), pages 1019-1037, October.
    21. Leandro C. Coelho & Jean-François Cordeau & Gilbert Laporte, 2014. "Thirty Years of Inventory Routing," Transportation Science, INFORMS, vol. 48(1), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Yunting & Lai, Kee-hung & Zhu, Qinghua, 2022. "Green supply chain innovation: Emergence, adoption, and challenges," International Journal of Production Economics, Elsevier, vol. 248(C).
    2. Keskin, Merve & Branke, Juergen & Deineko, Vladimir & Strauss, Arne K., 2023. "Dynamic multi-period vehicle routing with touting," European Journal of Operational Research, Elsevier, vol. 310(1), pages 168-184.
    3. Shao, Xue-Feng & Liu, Wei & Li, Yi & Chaudhry, Hassan Rauf & Yue, Xiao-Guang, 2021. "Multistage implementation framework for smart supply chain management under industry 4.0," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    4. Yasaman Mashayekhy & Amir Babaei & Xue-Ming Yuan & Anrong Xue, 2022. "Impact of Internet of Things (IoT) on Inventory Management: A Literature Survey," Logistics, MDPI, vol. 6(2), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leandro C. Coelho & Jean-François Cordeau & Gilbert Laporte, 2014. "Thirty Years of Inventory Routing," Transportation Science, INFORMS, vol. 48(1), pages 1-19, February.
    2. Cárdenas-Barrón, Leopoldo Eduardo & González-Velarde, José Luis & Treviño-Garza, Gerardo & Garza-Nuñez, Dagoberto, 2019. "Heuristic algorithm based on reduce and optimize approach for a selective and periodic inventory routing problem in a waste vegetable oil collection environment," International Journal of Production Economics, Elsevier, vol. 211(C), pages 44-59.
    3. Yugang Yu & Chengbin Chu & Haoxun Chen & Feng Chu, 2012. "Large scale stochastic inventory routing problems with split delivery and service level constraints," Annals of Operations Research, Springer, vol. 197(1), pages 135-158, August.
    4. Yves Crama & Mahmood Rezaei & Martin Savelsbergh & Tom Van Woensel, 2018. "Stochastic Inventory Routing for Perishable Products," Transportation Science, INFORMS, vol. 52(3), pages 526-546, June.
    5. Daniel Adelman, 2004. "A Price-Directed Approach to Stochastic Inventory/Routing," Operations Research, INFORMS, vol. 52(4), pages 499-514, August.
    6. Markov, Iliya & Bierlaire, Michel & Cordeau, Jean-François & Maknoon, Yousef & Varone, Sacha, 2018. "A unified framework for rich routing problems with stochastic demands," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 213-240.
    7. Sayarshad, Hamid R. & Gao, H. Oliver, 2018. "A non-myopic dynamic inventory routing and pricing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 83-98.
    8. Jin-Hwa Song & Martin Savelsbergh, 2007. "Performance Measurement for Inventory Routing," Transportation Science, INFORMS, vol. 41(1), pages 44-54, February.
    9. Mirzapour Al-e-hashem, Seyed M.J. & Rekik, Yacine & Mohammadi Hoseinhajlou, Ebrahim, 2019. "A hybrid L-shaped method to solve a bi-objective stochastic transshipment-enabled inventory routing problem," International Journal of Production Economics, Elsevier, vol. 209(C), pages 381-398.
    10. Bertazzi, Luca & Bosco, Adamo & Laganà, Demetrio, 2015. "Managing stochastic demand in an Inventory Routing Problem with transportation procurement," Omega, Elsevier, vol. 56(C), pages 112-121.
    11. Yu, Y. & Chu, C. & Chen, H.X. & Chu, F., 2010. "Linearization and Decomposition Methods for Large Scale Stochastic Inventory Routing Problem with Service Level Constraints," ERIM Report Series Research in Management ERS-2010-008-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    12. Anton J. Kleywegt & Vijay S. Nori & Martin W. P. Savelsbergh, 2004. "Dynamic Programming Approximations for a Stochastic Inventory Routing Problem," Transportation Science, INFORMS, vol. 38(1), pages 42-70, February.
    13. Rossi, Roberto & Tomasella, Maurizio & Martin-Barragan, Belen & Embley, Tim & Walsh, Christopher & Langston, Matthew, 2019. "The Dynamic Bowser Routing Problem," European Journal of Operational Research, Elsevier, vol. 275(1), pages 108-126.
    14. Claudia Archetti & Luca Bertazzi & Gilbert Laporte & Maria Grazia Speranza, 2007. "A Branch-and-Cut Algorithm for a Vendor-Managed Inventory-Routing Problem," Transportation Science, INFORMS, vol. 41(3), pages 382-391, August.
    15. Yossiri Adulyasak & Jean-François Cordeau & Raf Jans, 2015. "Benders Decomposition for Production Routing Under Demand Uncertainty," Operations Research, INFORMS, vol. 63(4), pages 851-867, August.
    16. Song, Ruidian & Zhao, Lei & Van Woensel, Tom & Fransoo, Jan C., 2019. "Coordinated delivery in urban retail," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 122-148.
    17. Anton J. Kleywegt & Vijay S. Nori & Martin W. P. Savelsbergh, 2002. "The Stochastic Inventory Routing Problem with Direct Deliveries," Transportation Science, INFORMS, vol. 36(1), pages 94-118, February.
    18. Ali Ekici & Okan Örsan Özener & Gültekin Kuyzu, 2015. "Cyclic Delivery Schedules for an Inventory Routing Problem," Transportation Science, INFORMS, vol. 49(4), pages 817-829, November.
    19. Alvarez, Aldair & Cordeau, Jean-François & Jans, Raf & Munari, Pedro & Morabito, Reinaldo, 2021. "Inventory routing under stochastic supply and demand," Omega, Elsevier, vol. 102(C).
    20. Li, Xiuhui & Wang, Qinan, 2007. "Coordination mechanisms of supply chain systems," European Journal of Operational Research, Elsevier, vol. 179(1), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:92:y:2020:i:c:s0305048319303184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.