IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v200y2018icp311-317.html
   My bibliography  Save this article

The disaster emergency unit scheduling problem to control wildfires

Author

Listed:
  • Araya-Córdova, P.J.
  • Vásquez, Óscar C.

Abstract

In this paper, we study optimization and mechanism design relative to the disaster emergency unit (DEU) scheduling problem to control wildfires. We consider a single DEU and a set of forestry companies, in a scenario where the resources are constrained and an emergency induces damage to the nearby towns. Each forestry company has information about the forest density, which in addition to the feedrate of wildfires determines its marginal waiting cost. In practice, it generates a waiting cost for each forestry company according to its position in the sequence and the working time for the DEU. The goal is to determine a schedule and the working times of the DEU, so as to minimize the sum of the total damage and the total waiting cost of the forestry companies subject to constraints on the damage and use of the working time of the DEU. We show that the centralized problem can be solved by Karush-Kuhn-Tucker (KKT) conditions and design an easy-to-implement truthful mechanism for the decentralized problem. This design charges the damage to the forestry companies based on the optimal solution properties obtained from the centralized problem, with overcharging bounded by a constant. A numerical example to illustrate the problem and the usefulness of our contributions is described. Finally, we extend our results to similar problems for sequential use of a resource, in which strictly increasing convex isoelastic damage functions are considered.

Suggested Citation

  • Araya-Córdova, P.J. & Vásquez, Óscar C., 2018. "The disaster emergency unit scheduling problem to control wildfires," International Journal of Production Economics, Elsevier, vol. 200(C), pages 311-317.
  • Handle: RePEc:eee:proeco:v:200:y:2018:i:c:p:311-317
    DOI: 10.1016/j.ijpe.2018.04.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527318301592
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2018.04.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mikael Rönnqvist & Sophie D’Amours & Andres Weintraub & Alejandro Jofre & Eldon Gunn & Robert Haight & David Martell & Alan Murray & Carlos Romero, 2015. "Operations Research challenges in forestry: 33 open problems," Annals of Operations Research, Springer, vol. 232(1), pages 11-40, September.
    2. van den Brink, René & González-Arangüena, Enrique & Manuel, Conrado & del Pozo, Mónica, 2014. "Order monotonic solutions for generalized characteristic functions," European Journal of Operational Research, Elsevier, vol. 238(3), pages 786-796.
    3. Minas, James P. & Hearne, John W. & Martell, David L., 2014. "A spatial optimisation model for multi-period landscape level fuel management to mitigate wildfire impacts," European Journal of Operational Research, Elsevier, vol. 232(2), pages 412-422.
    4. Nikhil Bansal & Christoph Dürr & Nguyen Kim Thang & Óscar C. Vásquez, 2017. "The local–global conjecture for scheduling with non-linear cost," Journal of Scheduling, Springer, vol. 20(3), pages 239-254, June.
    5. Nowak Andrzej S. & Radzik Tadeusz, 1994. "The Shapley Value for n-Person Games in Generalized Characteristic Function Form," Games and Economic Behavior, Elsevier, vol. 6(1), pages 150-161, January.
    6. Altay, Nezih & Green III, Walter G., 2006. "OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 175(1), pages 475-493, November.
    7. Wex, Felix & Schryen, Guido & Feuerriegel, Stefan & Neumann, Dirk, 2014. "Emergency response in natural disaster management: Allocation and scheduling of rescue units," European Journal of Operational Research, Elsevier, vol. 235(3), pages 697-708.
    8. N C Simpson & P G Hancock, 2009. "Fifty years of operational research and emergency response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 126-139, May.
    9. Galindo, Gina & Batta, Rajan, 2013. "Review of recent developments in OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 230(2), pages 201-211.
    10. Pettersen Strandenes, Siri & Wolfstetter, Elmar, 2005. "Efficient (re-)scheduling: An auction approach," Economics Letters, Elsevier, vol. 89(2), pages 187-192, November.
    11. David L. Martell, 2007. "Forest Fire Management," International Series in Operations Research & Management Science, in: Andres Weintraub & Carlos Romero & Trond Bjørndal & Rafael Epstein & Jaime Miranda (ed.), Handbook Of Operations Research In Natural Resources, chapter 0, pages 489-509, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sperling, Martina & Schryen, Guido, 2022. "Decision support for disaster relief: Coordinating spontaneous volunteers," European Journal of Operational Research, Elsevier, vol. 299(2), pages 690-705.
    2. Rauchecker, Gerhard & Schryen, Guido, 2019. "An exact branch-and-price algorithm for scheduling rescue units during disaster response," European Journal of Operational Research, Elsevier, vol. 272(1), pages 352-363.
    3. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    4. Farahani, Reza Zanjirani & Lotfi, M.M. & Baghaian, Atefe & Ruiz, Rubén & Rezapour, Shabnam, 2020. "Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations," European Journal of Operational Research, Elsevier, vol. 287(3), pages 787-819.
    5. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    6. Lu, Chung-Cheng & Ying, Kuo-Ching & Chen, Hui-Ju, 2016. "Real-time relief distribution in the aftermath of disasters – A rolling horizon approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 1-20.
    7. Gabriel Zayas‐Cabán & Emmett J. Lodree & David L. Kaufman, 2020. "Optimal Control of Parallel Queues for Managing Volunteer Convergence," Production and Operations Management, Production and Operations Management Society, vol. 29(10), pages 2268-2288, October.
    8. Esposito Amideo, A. & Scaparra, M.P. & Kotiadis, K., 2019. "Optimising shelter location and evacuation routing operations: The critical issues," European Journal of Operational Research, Elsevier, vol. 279(2), pages 279-295.
    9. Doan, Xuan Vinh & Shaw, Duncan, 2019. "Resource allocation when planning for simultaneous disasters," European Journal of Operational Research, Elsevier, vol. 274(2), pages 687-709.
    10. Paret, Kyle E. & Mayorga, Maria E. & Lodree, Emmett J., 2021. "Assigning spontaneous volunteers to relief efforts under uncertainty in task demand and volunteer availability," Omega, Elsevier, vol. 99(C).
    11. Powell, J.H. & Mustafee, N. & Chen, A.S. & Hammond, M., 2016. "System-focused risk identification and assessment for disaster preparedness: Dynamic threat analysis," European Journal of Operational Research, Elsevier, vol. 254(2), pages 550-564.
    12. Tippong, Danuphon & Petrovic, Sanja & Akbari, Vahid, 2022. "A review of applications of operational research in healthcare coordination in disaster management," European Journal of Operational Research, Elsevier, vol. 301(1), pages 1-17.
    13. Atefe Baghaian & M. M. Lotfi & Shabnam Rezapour, 2022. "Integrated deployment of local urban relief teams in the first hours after mass casualty incidents," Operational Research, Springer, vol. 22(4), pages 4517-4555, September.
    14. Kovacs, Gyöngyi & Moshtari, Mohammad, 2019. "A roadmap for higher research quality in humanitarian operations: A methodological perspective," European Journal of Operational Research, Elsevier, vol. 276(2), pages 395-408.
    15. Comrie, E.L. & Burns, C. & Coulson, A.B. & Quigley, J. & Quigley, K.F., 2019. "Rationalising the use of Twitter by official organisations during risk events: Operationalising the Social Amplification of Risk Framework through causal loop diagrams," European Journal of Operational Research, Elsevier, vol. 272(2), pages 792-801.
    16. Torabi, S.A. & Mansouri, S.A., 2015. "Integrated business continuity and disaster recovery planning: Towards organizational resilienceAuthor-Name: Sahebjamnia, N," European Journal of Operational Research, Elsevier, vol. 242(1), pages 261-273.
    17. Huang, Kai & Jiang, Yiping & Yuan, Yufei & Zhao, Lindu, 2015. "Modeling multiple humanitarian objectives in emergency response to large-scale disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 1-17.
    18. Preece, Gary & Shaw, Duncan & Hayashi, Haruo, 2015. "Application of the Viable System Model to analyse communications structures: A case study of disaster response in Japan," European Journal of Operational Research, Elsevier, vol. 243(1), pages 312-322.
    19. Cejun Cao & Congdong Li & Qin Yang & Fanshun Zhang, 2017. "Multi-Objective Optimization Model of Emergency Organization Allocation for Sustainable Disaster Supply Chain," Sustainability, MDPI, vol. 9(11), pages 1-22, November.
    20. Gutjahr, Walter J. & Nolz, Pamela C., 2016. "Multicriteria optimization in humanitarian aid," European Journal of Operational Research, Elsevier, vol. 252(2), pages 351-366.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:200:y:2018:i:c:p:311-317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.