IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v272y2019i2p792-801.html
   My bibliography  Save this article

Rationalising the use of Twitter by official organisations during risk events: Operationalising the Social Amplification of Risk Framework through causal loop diagrams

Author

Listed:
  • Comrie, E.L.
  • Burns, C.
  • Coulson, A.B.
  • Quigley, J.
  • Quigley, K.F.

Abstract

Communication of health risk events is a complex and challenging task. The advent of information and communication technology along with the following popularisation and widespread uptake of social media are reshaping the field of risk communication. Guided by key tenets of the Social Amplification of Risk Framework, this study developed a causal loop diagram, capturing the perceptions of professionals in health organisations regarding the role of Twitter during risk events. The aim of this paper is to explore the use of the causal loop diagram and its role with rationalising the use of Twitter in risk communication strategies. A key finding of the model is the central role of trust and its interrelationship with other factors during a risk event. A contribution is made to operational research through the novel use of soft system dynamics in risk communication, to risk communication through the investigation of the new medium Twitter and also to research on the Social Amplification of Risk Framework by providing a means through which to operationalise the framework.

Suggested Citation

  • Comrie, E.L. & Burns, C. & Coulson, A.B. & Quigley, J. & Quigley, K.F., 2019. "Rationalising the use of Twitter by official organisations during risk events: Operationalising the Social Amplification of Risk Framework through causal loop diagrams," European Journal of Operational Research, Elsevier, vol. 272(2), pages 792-801.
  • Handle: RePEc:eee:ejores:v:272:y:2019:i:2:p:792-801
    DOI: 10.1016/j.ejor.2018.07.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718306398
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.07.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Áine Regan & Monique Raats & Liran Christine Shan & Patrick G. Wall & Áine McConnon, 2016. "Risk communication and social media during food safety crises: a study of stakeholders' opinions in Ireland," Journal of Risk Research, Taylor & Francis Journals, vol. 19(1), pages 119-133, January.
    2. Fry, John & Binner, Jane M., 2016. "Elementary modelling and behavioural analysis for emergency evacuations using social media," European Journal of Operational Research, Elsevier, vol. 249(3), pages 1014-1023.
    3. J S Busby & S Onggo, 2013. "Managing the social amplification of risk: a simulation of interacting actors," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(5), pages 638-653, May.
    4. Roger E. Kasperson & Ortwin Renn & Paul Slovic & Halina S. Brown & Jacque Emel & Robert Goble & Jeanne X. Kasperson & Samuel Ratick, 1988. "The Social Amplification of Risk: A Conceptual Framework," Risk Analysis, John Wiley & Sons, vol. 8(2), pages 177-187, June.
    5. Constanze Rossmann & Lisa Meyer & Peter J. Schulz, 2018. "The Mediated Amplification of a Crisis: Communicating the A/H1N1 Pandemic in Press Releases and Press Coverage in Europe," Risk Analysis, John Wiley & Sons, vol. 38(2), pages 357-375, February.
    6. Altay, Nezih & Green III, Walter G., 2006. "OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 175(1), pages 475-493, November.
    7. Eiselt, H.A. & Marianov, Vladimir, 2012. "Mobile phone tower location for survival after natural disasters," European Journal of Operational Research, Elsevier, vol. 216(3), pages 563-572.
    8. Busby, J.S. & Onggo, B.S.S. & Liu, Y., 2016. "Agent-based computational modelling of social risk responses," European Journal of Operational Research, Elsevier, vol. 251(3), pages 1029-1042.
    9. Gary E. Machlis & Eugene A. Rosa, 1990. "Desired Risk: Broadening the Social Amplification of Risk Framework," Risk Analysis, John Wiley & Sons, vol. 10(1), pages 161-168, March.
    10. Preece, Gary & Shaw, Duncan & Hayashi, Haruo, 2015. "Application of the Viable System Model to analyse communications structures: A case study of disaster response in Japan," European Journal of Operational Research, Elsevier, vol. 243(1), pages 312-322.
    11. N C Simpson & P G Hancock, 2009. "Fifty years of operational research and emergency response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 126-139, May.
    12. Venu Kandiah & Andrew R. Binder & Emily Z. Berglund, 2017. "An Empirical Agent‐Based Model to Simulate the Adoption of Water Reuse Using the Social Amplification of Risk Framework," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 2005-2022, October.
    13. Galindo, Gina & Batta, Rajan, 2013. "Review of recent developments in OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 230(2), pages 201-211.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Qun & Jia, Guozhu & Song, Wenyan, 2022. "Identifying critical factors in systems with interrelated components: A method considering heterogeneous influence and strength attenuation," European Journal of Operational Research, Elsevier, vol. 303(1), pages 456-470.
    2. Quariguasi Frota Neto, João & Dutordoir, Marie, 2020. "Mapping the market for remanufacturing: An application of “Big Data” analytics," International Journal of Production Economics, Elsevier, vol. 230(C).
    3. Dominic Balog‐Way & Katherine McComas & John Besley, 2020. "The Evolving Field of Risk Communication," Risk Analysis, John Wiley & Sons, vol. 40(S1), pages 2240-2262, November.
    4. Carine Dominguez-Péry & Rana Tassabehji & Lakshmi Narasimha Raju Vuddaraju & Vikhram Kofi Duffour, 2021. "Improving emergency response operations in maritime accidents using social media with big data analytics: a case study of the MV Wakashio disaster," Post-Print hal-04021179, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Esposito Amideo, A. & Scaparra, M.P. & Kotiadis, K., 2019. "Optimising shelter location and evacuation routing operations: The critical issues," European Journal of Operational Research, Elsevier, vol. 279(2), pages 279-295.
    2. Preece, Gary & Shaw, Duncan & Hayashi, Haruo, 2015. "Application of the Viable System Model to analyse communications structures: A case study of disaster response in Japan," European Journal of Operational Research, Elsevier, vol. 243(1), pages 312-322.
    3. Araya-Córdova, P.J. & Vásquez, Óscar C., 2018. "The disaster emergency unit scheduling problem to control wildfires," International Journal of Production Economics, Elsevier, vol. 200(C), pages 311-317.
    4. Lu, Chung-Cheng & Ying, Kuo-Ching & Chen, Hui-Ju, 2016. "Real-time relief distribution in the aftermath of disasters – A rolling horizon approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 1-20.
    5. Sperling, Martina & Schryen, Guido, 2022. "Decision support for disaster relief: Coordinating spontaneous volunteers," European Journal of Operational Research, Elsevier, vol. 299(2), pages 690-705.
    6. Christopher D. Wirz & Michael A. Xenos & Dominique Brossard & Dietram Scheufele & Jennifer H. Chung & Luisa Massarani, 2018. "Rethinking Social Amplification of Risk: Social Media and Zika in Three Languages," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2599-2624, December.
    7. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    8. Tippong, Danuphon & Petrovic, Sanja & Akbari, Vahid, 2022. "A review of applications of operational research in healthcare coordination in disaster management," European Journal of Operational Research, Elsevier, vol. 301(1), pages 1-17.
    9. Kovacs, Gyöngyi & Moshtari, Mohammad, 2019. "A roadmap for higher research quality in humanitarian operations: A methodological perspective," European Journal of Operational Research, Elsevier, vol. 276(2), pages 395-408.
    10. Farahani, Reza Zanjirani & Lotfi, M.M. & Baghaian, Atefe & Ruiz, Rubén & Rezapour, Shabnam, 2020. "Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations," European Journal of Operational Research, Elsevier, vol. 287(3), pages 787-819.
    11. Gutjahr, Walter J. & Nolz, Pamela C., 2016. "Multicriteria optimization in humanitarian aid," European Journal of Operational Research, Elsevier, vol. 252(2), pages 351-366.
    12. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    13. Gabriel Zayas‐Cabán & Emmett J. Lodree & David L. Kaufman, 2020. "Optimal Control of Parallel Queues for Managing Volunteer Convergence," Production and Operations Management, Production and Operations Management Society, vol. 29(10), pages 2268-2288, October.
    14. Rauchecker, Gerhard & Schryen, Guido, 2019. "An exact branch-and-price algorithm for scheduling rescue units during disaster response," European Journal of Operational Research, Elsevier, vol. 272(1), pages 352-363.
    15. Doan, Xuan Vinh & Shaw, Duncan, 2019. "Resource allocation when planning for simultaneous disasters," European Journal of Operational Research, Elsevier, vol. 274(2), pages 687-709.
    16. Paret, Kyle E. & Mayorga, Maria E. & Lodree, Emmett J., 2021. "Assigning spontaneous volunteers to relief efforts under uncertainty in task demand and volunteer availability," Omega, Elsevier, vol. 99(C).
    17. Powell, J.H. & Mustafee, N. & Chen, A.S. & Hammond, M., 2016. "System-focused risk identification and assessment for disaster preparedness: Dynamic threat analysis," European Journal of Operational Research, Elsevier, vol. 254(2), pages 550-564.
    18. Torabi, S.A. & Mansouri, S.A., 2015. "Integrated business continuity and disaster recovery planning: Towards organizational resilienceAuthor-Name: Sahebjamnia, N," European Journal of Operational Research, Elsevier, vol. 242(1), pages 261-273.
    19. Huang, Kai & Jiang, Yiping & Yuan, Yufei & Zhao, Lindu, 2015. "Modeling multiple humanitarian objectives in emergency response to large-scale disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 1-17.
    20. Yiping Jiang & Yufei Yuan, 2019. "Emergency Logistics in a Large-Scale Disaster Context: Achievements and Challenges," IJERPH, MDPI, vol. 16(5), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:272:y:2019:i:2:p:792-801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.