IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v128y2010i2p586-602.html
   My bibliography  Save this article

Performance analysis of demand planning approaches for aggregating, forecasting and disaggregating interrelated demands

Author

Listed:
  • Chen, Argon
  • Blue, Jakey

Abstract

A synchronized and responsive flow of materials, information, funds, processes and services is the goal of supply chain planning. Demand planning, which is the very first step of supply chain planning, determines the effectiveness of manufacturing and logistic operations in the chain. Propagation and magnification of the uncertainty of demand signals through the supply chain, referred to as the bullwhip effect, is the major cause of ineffective operation plans. Therefore, a flexible and robust supply chain forecasting system is necessary for industrial planners to quickly respond to the volatile demand. Appropriate demand aggregation and statistical forecasting approaches are known to be effective in managing the demand variability. This paper uses the bivariate VAR(1) time series model as a study vehicle to investigate the effects of aggregating, forecasting and disaggregating two interrelated demands. Through theoretical development and systematic analysis, guidelines are provided to select proper demand planning approaches. A very important finding of this research is that disaggregation of a forecasted aggregated demand should be employed when the aggregated demand is very predictable through its positive autocorrelation. Moreover, the large positive correlation between demands can enhance the predictability and thus result in more accurate forecasts when statistical forecasting methods are used.

Suggested Citation

  • Chen, Argon & Blue, Jakey, 2010. "Performance analysis of demand planning approaches for aggregating, forecasting and disaggregating interrelated demands," International Journal of Production Economics, Elsevier, vol. 128(2), pages 586-602, December.
  • Handle: RePEc:eee:proeco:v:128:y:2010:i:2:p:586-602
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(10)00231-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gfrerer, Helmut & Zapfel, Gunther, 1995. "Hierarchical model for production planning in the case of uncertain demand," European Journal of Operational Research, Elsevier, vol. 86(1), pages 142-161, October.
    2. Nesim Erkip & Warren H. Hausman & Steven Nahmias, 1990. "Optimal Centralized Ordering Policies in Multi-Echelon Inventory Systems with Correlated Demands," Management Science, INFORMS, vol. 36(3), pages 381-392, March.
    3. Tiao, George C & Tsay, Ruey S, 1983. "Multiple Time Series Modeling and Extended Sample Cross-Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(1), pages 43-56, January.
    4. Aigner, D.J. & Goldfeld, S.M., 1974. "Estimation and prediction from aggregate data when aggregates are measured more accurately than their components," LIDAM Reprints CORE 190, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Dangerfield, Byron J. & Morris, John S., 1992. "Top-down or bottom-up: Aggregate versus disaggregate extrapolations," International Journal of Forecasting, Elsevier, vol. 8(2), pages 233-241, October.
    6. Shin-Lian Lo & Fu-Kwun Wang & James T. Lin, 2008. "Forecasting for the LCD monitor market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(4), pages 341-356.
    7. Aigner, Dennis J & Goldfeld, Stephen M, 1974. "Estimation and Prediction from Aggregate Data when Aggregates are Measured More Accurately than Their Components," Econometrica, Econometric Society, vol. 42(1), pages 113-134, January.
    8. Zotteri, Giulio & Kalchschmidt, Matteo & Caniato, Federico, 2005. "The impact of aggregation level on forecasting performance," International Journal of Production Economics, Elsevier, vol. 93(1), pages 479-491, January.
    9. Dekker, Mark & van Donselaar, Karel & Ouwehand, Pim, 2004. "How to use aggregation and combined forecasting to improve seasonal demand forecasts," International Journal of Production Economics, Elsevier, vol. 90(2), pages 151-167, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Yun Shin, 2014. "Management of a periodic-review inventory system using Bayesian model averaging when new marketing efforts are made," International Journal of Production Economics, Elsevier, vol. 158(C), pages 278-289.
    2. Nagaraja, Chaitra H. & McElroy, Tucker, 2018. "The multivariate bullwhip effect," European Journal of Operational Research, Elsevier, vol. 267(1), pages 96-106.
    3. Sbrana, Giacomo & Silvestrini, Andrea, 2013. "Forecasting aggregate demand: Analytical comparison of top-down and bottom-up approaches in a multivariate exponential smoothing framework," International Journal of Production Economics, Elsevier, vol. 146(1), pages 185-198.
    4. Wang, Gang & Gunasekaran, Angappa & Ngai, Eric W.T. & Papadopoulos, Thanos, 2016. "Big data analytics in logistics and supply chain management: Certain investigations for research and applications," International Journal of Production Economics, Elsevier, vol. 176(C), pages 98-110.
    5. Boylan, John E. & Babai, M. Zied, 2016. "On the performance of overlapping and non-overlapping temporal demand aggregation approaches," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 136-144.
    6. Bahman Rostami‐Tabar & M. Zied Babai & Aris Syntetos & Yves Ducq, 2013. "Demand forecasting by temporal aggregation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(6), pages 479-498, September.
    7. Poloni, Federico & Sbrana, Giacomo, 2015. "A note on forecasting demand using the multivariate exponential smoothing framework," International Journal of Production Economics, Elsevier, vol. 162(C), pages 143-150.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sbrana, Giacomo & Silvestrini, Andrea, 2013. "Forecasting aggregate demand: Analytical comparison of top-down and bottom-up approaches in a multivariate exponential smoothing framework," International Journal of Production Economics, Elsevier, vol. 146(1), pages 185-198.
    2. Moon, Seongmin & Hicks, Christian & Simpson, Andrew, 2012. "The development of a hierarchical forecasting method for predicting spare parts demand in the South Korean Navy—A case study," International Journal of Production Economics, Elsevier, vol. 140(2), pages 794-802.
    3. Babai, Zied & Boylan, John E. & Kolassa, Stephan & Nikolopoulos, Konstantinos, 2016. "Supply chain forecasting: Theory, practice, their gap and the futureAuthor-Name: Syntetos, Aris A," European Journal of Operational Research, Elsevier, vol. 252(1), pages 1-26.
    4. Rostami-Tabar, Bahman & Babai, Mohamed Zied & Ducq, Yves & Syntetos, Aris, 2015. "Non-stationary demand forecasting by cross-sectional aggregation," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 297-309.
    5. Bahman Rostami‐Tabar & M. Zied Babai & Aris Syntetos & Yves Ducq, 2013. "Demand forecasting by temporal aggregation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(6), pages 479-498, September.
    6. Carson, Richard T. & Cenesizoglu, Tolga & Parker, Roger, 2011. "Forecasting (aggregate) demand for US commercial air travel," International Journal of Forecasting, Elsevier, vol. 27(3), pages 923-941.
    7. Giacomini, Raffaella & Granger, Clive W. J., 2004. "Aggregation of space-time processes," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 7-26.
    8. Edward E. Leamer, 1982. "Optimal Aggegation of Linear Systems," UCLA Economics Working Papers 240, UCLA Department of Economics.
    9. Monteforte, Libero, 2007. "Aggregation bias in macro models: Does it matter for the euro area?," Economic Modelling, Elsevier, vol. 24(2), pages 236-261, March.
    10. Moon, Seongmin & Simpson, Andrew & Hicks, Christian, 2013. "The development of a classification model for predicting the performance of forecasting methods for naval spare parts demand," International Journal of Production Economics, Elsevier, vol. 143(2), pages 449-454.
    11. Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2018. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," MPRA Paper 91762, University Library of Munich, Germany.
    12. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
    13. Babai, M. Zied & Ali, Mohammad M. & Nikolopoulos, Konstantinos, 2012. "Impact of temporal aggregation on stock control performance of intermittent demand estimators: Empirical analysis," Omega, Elsevier, vol. 40(6), pages 713-721.
    14. Ariel Pakes & Mark Schankerman, 1984. "An Exploration into the Determinants of Research Intensity," NBER Chapters, in: R&D, Patents, and Productivity, pages 209-232, National Bureau of Economic Research, Inc.
    15. George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Anastasios Panagiotelis, 2023. "Forecast Reconciliation: A Review," Monash Econometrics and Business Statistics Working Papers 8/23, Monash University, Department of Econometrics and Business Statistics.
    16. Poloni, Federico & Sbrana, Giacomo, 2015. "A note on forecasting demand using the multivariate exponential smoothing framework," International Journal of Production Economics, Elsevier, vol. 162(C), pages 143-150.
    17. Bernardina Algieri, 2004. "Price and Income Elasticities of Russian Exports," European Journal of Comparative Economics, Cattaneo University (LIUC), vol. 1(2), pages 175-193, December.
    18. Huber, Jakob & Stuckenschmidt, Heiner, 2021. "Intraday shelf replenishment decision support for perishable goods," International Journal of Production Economics, Elsevier, vol. 231(C).
    19. Leon, Jorge, 2012. "A Disaggregate Model and Second Round Effects for the CPI Inflation in Costa Rica," MPRA Paper 44484, University Library of Munich, Germany, revised 2012.
    20. Ma, Shaohui & Fildes, Robert, 2020. "Forecasting third-party mobile payments with implications for customer flow prediction," International Journal of Forecasting, Elsevier, vol. 36(3), pages 739-760.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:128:y:2010:i:2:p:586-602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.