IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v569y2021ics0378437121000479.html
   My bibliography  Save this article

Modeling and solving the last-shift period train scheduling problem in subway networks

Author

Listed:
  • Nie, Wei
  • Li, Hao
  • Xiao, Na
  • Yang, Hao
  • Jiang, Zhishu
  • Buhigiro, Nsabimana

Abstract

Train arrivals and departures should be scheduled over a certain period when talking about train timetabling problems. For the midnight train operations, passengers significantly concern about the network transfer issue. Currently, some existing studies address the last train timetabling problem by only optimizing the timetable for the last train on a single subway line whereas this study takes into consideration the complete last-shift period. We first put forward a last-shift train scheduling model aiming to minimize the transfer waiting time and maximize the network connectivity. Two genetic-based algorithms, an integer-coded genetic algorithm (ICGA) and a binary-coded genetic algorithm (BCGA) are developed. The relevance and applicability of the algorithms have been demonstrated by several testing networks and real-world implementation. The ICGA and the branch-and-bound approaches show high efficiency in obtaining the optimal solutions for a small network, while the BCGA approach that bases on an integer-programming model shows low efficiency in addressing problems of sparse solution spaces. However, the branch-and-bound approach has limited ability in solving medium-sized networks. On the contrary, the ICGA generates satisfactory results in solution quality and computational efficiency when applied to large-sized networks.

Suggested Citation

  • Nie, Wei & Li, Hao & Xiao, Na & Yang, Hao & Jiang, Zhishu & Buhigiro, Nsabimana, 2021. "Modeling and solving the last-shift period train scheduling problem in subway networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).
  • Handle: RePEc:eee:phsmap:v:569:y:2021:i:c:s0378437121000479
    DOI: 10.1016/j.physa.2021.125775
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121000479
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.125775?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kroon, Leo & Maróti, Gábor & Helmrich, Mathijn Retel & Vromans, Michiel & Dekker, Rommert, 2008. "Stochastic improvement of cyclic railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 553-570, July.
    2. Zwaneveld, Peter J. & Kroon, Leo G. & van Hoesel, Stan P. M., 2001. "Routing trains through a railway station based on a node packing model," European Journal of Operational Research, Elsevier, vol. 128(1), pages 14-33, January.
    3. Mor Kaspi & Tal Raviv, 2013. "Service-Oriented Line Planning and Timetabling for Passenger Trains," Transportation Science, INFORMS, vol. 47(3), pages 295-311, August.
    4. Lee, Yusin & Chen, Chuen-Yih, 2009. "A heuristic for the train pathing and timetabling problem," Transportation Research Part B: Methodological, Elsevier, vol. 43(8-9), pages 837-851, September.
    5. Kang, Liujiang & Sun, Huijun & Wu, Jianjun & Gao, Ziyou, 2020. "Last train station-skipping, transfer-accessible and energy-efficient scheduling in subway networks," Energy, Elsevier, vol. 206(C).
    6. Kang, Liujiang & Zhu, Xiaoning & Sun, Huijun & Wu, Jianjun & Gao, Ziyou & Hu, Bin, 2019. "Last train timetabling optimization and bus bridging service management in urban railway transit networks," Omega, Elsevier, vol. 84(C), pages 31-44.
    7. Ralf Borndörfer & Martin Grötschel & Marc E. Pfetsch, 2007. "A Column-Generation Approach to Line Planning in Public Transport," Transportation Science, INFORMS, vol. 41(1), pages 123-132, February.
    8. Matteo Fischetti & Domenico Salvagnin & Arrigo Zanette, 2009. "Fast Approaches to Improve the Robustness of a Railway Timetable," Transportation Science, INFORMS, vol. 43(3), pages 321-335, August.
    9. Guihaire, Valérie & Hao, Jin-Kao, 2008. "Transit network design and scheduling: A global review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1251-1273, December.
    10. Ghoseiri, Keivan & Szidarovszky, Ferenc & Asgharpour, Mohammad Jawad, 2004. "A multi-objective train scheduling model and solution," Transportation Research Part B: Methodological, Elsevier, vol. 38(10), pages 927-952, December.
    11. Rachel C. W. Wong & Tony W. Y. Yuen & Kwok Wah Fung & Janny M. Y. Leung, 2008. "Optimizing Timetable Synchronization for Rail Mass Transit," Transportation Science, INFORMS, vol. 42(1), pages 57-69, February.
    12. Schmöcker, Jan-Dirk & Fonzone, Achille & Shimamoto, Hiroshi & Kurauchi, Fumitaka & Bell, Michael G.H., 2011. "Frequency-based transit assignment considering seat capacities," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 392-408, February.
    13. Shafahi, Yousef & Khani, Alireza, 2010. "A practical model for transfer optimization in a transit network: Model formulations and solutions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(6), pages 377-389, July.
    14. Kang, Liujiang & Wu, Jianjun & Sun, Huijun & Zhu, Xiaoning & Gao, Ziyou, 2015. "A case study on the coordination of last trains for the Beijing subway network," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 112-127.
    15. James H. Bookbinder & Alain Désilets, 1992. "Transfer Optimization in a Transit Network," Transportation Science, INFORMS, vol. 26(2), pages 106-118, May.
    16. Michael Francis Gorman, 1998. "An application of genetic and tabu searches to the freight railroad operating plan problem," Annals of Operations Research, Springer, vol. 78(0), pages 51-69, January.
    17. Blanco, Víctor & Conde, Eduardo & Hinojosa, Yolanda & Puerto, Justo, 2020. "An optimization model for line planning and timetabling in automated urban metro subway networks. A case study," Omega, Elsevier, vol. 92(C).
    18. Assad, Arjang A., 1980. "Modelling of rail networks: Toward a routing/makeup model," Transportation Research Part B: Methodological, Elsevier, vol. 14(1-2), pages 101-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Chao & Meng, Xin & Guo, Mingxue & Li, Hao & Hou, Zhiqiang, 2022. "An integrated energy-efficient and transfer-accessible model for the last train timetabling problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    2. Huang, Kang & Wu, Jianjun & Sun, Huijun & Yang, Xin & Gao, Ziyou & Feng, Xujie, 2022. "Timetable synchronization optimization in a subway–bus network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    3. Zhang, Quan & Li, Xuan & Yan, Tao & Lu, Lili & Shi, Yang, 2022. "Last train timetabling optimization for minimizing passenger transfer failures in urban rail transit networks: A time period based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chao & Meng, Xin & Guo, Mingxue & Li, Hao & Hou, Zhiqiang, 2022. "An integrated energy-efficient and transfer-accessible model for the last train timetabling problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    2. Kang, Liujiang & Zhu, Xiaoning & Sun, Huijun & Wu, Jianjun & Gao, Ziyou & Hu, Bin, 2019. "Last train timetabling optimization and bus bridging service management in urban railway transit networks," Omega, Elsevier, vol. 84(C), pages 31-44.
    3. Pan Shang & Yu Yao & Liya Yang & Lingyun Meng & Pengli Mo, 2021. "Integrated Model for Timetabling and Circulation Planning on an Urban Rail Transit Line: a Coupled Network-Based Flow Formulation," Networks and Spatial Economics, Springer, vol. 21(2), pages 331-364, June.
    4. Kang, Liujiang & Li, Hao & Sun, Huijun & Wu, Jianjun & Cao, Zhiguang & Buhigiro, Nsabimana, 2021. "First train timetabling and bus service bridging in intermodal bus-and-train transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 443-462.
    5. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    6. Kang, Liujiang & Zhu, Xiaoning & Sun, Huijun & Puchinger, Jakob & Ruthmair, Mario & Hu, Bin, 2016. "Modeling the first train timetabling problem with minimal missed trains and synchronization time differences in subway networks," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 17-36.
    7. Chen, Zebin & Li, Shukai & D’Ariano, Andrea & Yang, Lixing, 2022. "Real-time optimization for train regulation and stop-skipping adjustment strategy of urban rail transit lines," Omega, Elsevier, vol. 110(C).
    8. Blanco, Víctor & Conde, Eduardo & Hinojosa, Yolanda & Puerto, Justo, 2020. "An optimization model for line planning and timetabling in automated urban metro subway networks. A case study," Omega, Elsevier, vol. 92(C).
    9. Zhang, Quan & Li, Xuan & Yan, Tao & Lu, Lili & Shi, Yang, 2022. "Last train timetabling optimization for minimizing passenger transfer failures in urban rail transit networks: A time period based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    10. Guo, Xin & Sun, Huijun & Wu, Jianjun & Jin, Jiangang & Zhou, Jin & Gao, Ziyou, 2017. "Multiperiod-based timetable optimization for metro transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 46-67.
    11. Yang, Lixing & Zhou, Xuesong & Gao, Ziyou, 2014. "Credibility-based rescheduling model in a double-track railway network: a fuzzy reliable optimization approach," Omega, Elsevier, vol. 48(C), pages 75-93.
    12. Kang, Liujiang & Wu, Jianjun & Sun, Huijun & Zhu, Xiaoning & Gao, Ziyou, 2015. "A case study on the coordination of last trains for the Beijing subway network," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 112-127.
    13. Kang, Liujiang & Sun, Huijun & Wu, Jianjun & Gao, Ziyou, 2020. "Last train station-skipping, transfer-accessible and energy-efficient scheduling in subway networks," Energy, Elsevier, vol. 206(C).
    14. Hu, Yuting & Li, Shukai & Dessouky, Maged M. & Yang, Lixing & Gao, Ziyou, 2022. "Computationally efficient train timetable generation of metro networks with uncertain transfer walking time to reduce passenger waiting time: A generalized Benders decomposition-based method," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 210-231.
    15. Lee, Yusin & Lu, Li-Sin & Wu, Mei-Ling & Lin, Dung-Ying, 2017. "Balance of efficiency and robustness in passenger railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 142-156.
    16. Huang, Kang & Wu, Jianjun & Sun, Huijun & Yang, Xin & Gao, Ziyou & Feng, Xujie, 2022. "Timetable synchronization optimization in a subway–bus network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    17. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    18. Fonseca, João Paiva & van der Hurk, Evelien & Roberti, Roberto & Larsen, Allan, 2018. "A matheuristic for transfer synchronization through integrated timetabling and vehicle scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 128-149.
    19. Zhang, Chuntian & Gao, Yuan & Yang, Lixing & Gao, Ziyou & Qi, Jianguo, 2020. "Joint optimization of train scheduling and maintenance planning in a railway network: A heuristic algorithm using Lagrangian relaxation," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 64-92.
    20. Hadas, Yuval & Ranjitkar, Prakash, 2012. "Modeling public-transit connectivity with spatial quality-of-transfer measurements," Journal of Transport Geography, Elsevier, vol. 22(C), pages 137-147.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:569:y:2021:i:c:s0378437121000479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.