IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v96y2017icp46-67.html
   My bibliography  Save this article

Multiperiod-based timetable optimization for metro transit networks

Author

Listed:
  • Guo, Xin
  • Sun, Huijun
  • Wu, Jianjun
  • Jin, Jiangang
  • Zhou, Jin
  • Gao, Ziyou

Abstract

This paper tackles the train timetable optimization problem for metro transit networks (MTN) in order to enhance the performance of transfer synchronization between different rail lines. Train timetables of connecting lines are adjusted in such a way that train arrivals at transfer stations can be well synchronized. This study particularly focuses on the timetable optimization problem in the transitional period (from peak to off-peak hours or vice versa) during which train headway changes and passenger travel demand varies significantly. A mixed integer nonlinear programming model is proposed to generate an optimal train timetable and maximize the transfer synchronization events. Secondly, an efficient hybrid optimization algorithm based on the Particle Swarm Optimization and Simulated Annealing (PSO-SA) is designed to obtain near-optimal solutions in an efficient way. Meanwhile, in order to demonstrate the effectiveness of the proposed method, the results of numerical example solved by PSO-SA are compared with a branch-and-bound method and other heuristicalgorithms. Finally, a real-world case study based on the Beijing metro network and travel demand is conducted to validate the proposed timetabling model. Computational results demonstrate the effectiveness of adjusting train timetables and the applicability of the developed approach to real-world metro networks.

Suggested Citation

  • Guo, Xin & Sun, Huijun & Wu, Jianjun & Jin, Jiangang & Zhou, Jin & Gao, Ziyou, 2017. "Multiperiod-based timetable optimization for metro transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 46-67.
  • Handle: RePEc:eee:transb:v:96:y:2017:i:c:p:46-67
    DOI: 10.1016/j.trb.2016.11.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S019126151630131X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2016.11.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Palma, André & Lindsey, Robin, 2001. "Optimal timetables for public transportation," Transportation Research Part B: Methodological, Elsevier, vol. 35(8), pages 789-813, September.
    2. Yan, Shangyao & Chen, Hao-Lei, 2002. "A scheduling model and a solution algorithm for inter-city bus carriers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(9), pages 805-825, November.
    3. Domschke, Wolfgang, 1989. "Schedule synchronization for public transit networks," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 39291, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    4. Christian Liebchen, 2008. "The First Optimized Railway Timetable in Practice," Transportation Science, INFORMS, vol. 42(4), pages 420-435, November.
    5. Sels, P. & Dewilde, T. & Cattrysse, D. & Vansteenwegen, P., 2016. "Reducing the passenger travel time in practice by the automated construction of a robust railway timetable," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 124-156.
    6. Omar J. Ibarra-Rojas & Fernando López-Irarragorri & Yasmin A. Rios-Solis, 2016. "Multiperiod Bus Timetabling," Transportation Science, INFORMS, vol. 50(3), pages 805-822, August.
    7. Castelli, Lorenzo & Pesenti, Raffaele & Ukovich, Walter, 2004. "Scheduling multimodal transportation systems," European Journal of Operational Research, Elsevier, vol. 155(3), pages 603-615, June.
    8. Nachtigall, Karl & Voget, Stefan, 1997. "Minimizing waiting times in integrated fixed interval timetables by upgrading railway tracks," European Journal of Operational Research, Elsevier, vol. 103(3), pages 610-627, December.
    9. Guihaire, Valérie & Hao, Jin-Kao, 2008. "Transit network design and scheduling: A global review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1251-1273, December.
    10. Lin, Cheng-Chang & Chen, Sheu-Hua, 2008. "An integral constrained generalized hub-and-spoke network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(6), pages 986-1003, November.
    11. Ibarra-Rojas, Omar J. & Rios-Solis, Yasmin A., 2012. "Synchronization of bus timetabling," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 599-614.
    12. Salicrú, M. & Fleurent, C. & Armengol, J.M., 2011. "Timetable-based operation in urban transport: Run-time optimisation and improvements in the operating process," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(8), pages 721-740, October.
    13. Rachel C. W. Wong & Tony W. Y. Yuen & Kwok Wah Fung & Janny M. Y. Leung, 2008. "Optimizing Timetable Synchronization for Rail Mass Transit," Transportation Science, INFORMS, vol. 42(1), pages 57-69, February.
    14. Yang, Xin & Chen, Anthony & Ning, Bin & Tang, Tao, 2016. "A stochastic model for the integrated optimization on metro timetable and speed profile with uncertain train mass," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 424-445.
    15. Juan Mesa & Francisco Ortega & Miguel Pozo, 2014. "Locating optimal timetables and vehicle schedules in a transit line," Annals of Operations Research, Springer, vol. 222(1), pages 439-455, November.
    16. Shafahi, Yousef & Khani, Alireza, 2010. "A practical model for transfer optimization in a transit network: Model formulations and solutions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(6), pages 377-389, July.
    17. Kang, Jee Eun & Chow, Joseph Y.J. & Recker, Will W., 2013. "On activity-based network design problems," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 398-418.
    18. Odijk, Michiel A., 1996. "A constraint generation algorithm for the construction of periodic railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 30(6), pages 455-464, December.
    19. Vaughan, Rodney, 1986. "Optimum polar networks for an urban bus system with a many-to-many travel demand," Transportation Research Part B: Methodological, Elsevier, vol. 20(3), pages 215-224, June.
    20. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    21. Kang, Liujiang & Wu, Jianjun & Sun, Huijun & Zhu, Xiaoning & Gao, Ziyou, 2015. "A case study on the coordination of last trains for the Beijing subway network," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 112-127.
    22. Ceder, A. & Golany, B. & Tal, O., 2001. "Creating bus timetables with maximal synchronization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(10), pages 913-928, December.
    23. Kang, Liujiang & Wu, Jianjun & Sun, Huijun & Zhu, Xiaoning & Wang, Bo, 2015. "A practical model for last train rescheduling with train delay in urban railway transit networks," Omega, Elsevier, vol. 50(C), pages 29-42.
    24. Tong, Lu & Zhou, Xuesong & Miller, Harvey J., 2015. "Transportation network design for maximizing space–time accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 555-576.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kang, Liujiang & Zhu, Xiaoning & Sun, Huijun & Wu, Jianjun & Gao, Ziyou & Hu, Bin, 2019. "Last train timetabling optimization and bus bridging service management in urban railway transit networks," Omega, Elsevier, vol. 84(C), pages 31-44.
    2. Kang, Liujiang & Zhu, Xiaoning & Sun, Huijun & Puchinger, Jakob & Ruthmair, Mario & Hu, Bin, 2016. "Modeling the first train timetabling problem with minimal missed trains and synchronization time differences in subway networks," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 17-36.
    3. Kang, Liujiang & Wu, Jianjun & Sun, Huijun & Zhu, Xiaoning & Gao, Ziyou, 2015. "A case study on the coordination of last trains for the Beijing subway network," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 112-127.
    4. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    5. Guo, Xin & Wu, Jianjun & Sun, Huijun & Yang, Xin & Jin, Jian Gang & Wang, David Z.W., 2020. "Scheduling synchronization in urban rail transit networks: Trade-offs between transfer passenger and last train operation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 463-490.
    6. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    7. Fonseca, João Paiva & van der Hurk, Evelien & Roberti, Roberto & Larsen, Allan, 2018. "A matheuristic for transfer synchronization through integrated timetabling and vehicle scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 128-149.
    8. Chu, James C. & Korsesthakarn, Kanticha & Hsu, Yu-Ting & Wu, Hua-Yen, 2019. "Models and a solution algorithm for planning transfer synchronization of bus timetables," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 247-266.
    9. Sihui Long & Lingyun Meng & Jianrui Miao & Xin Hong & Francesco Corman, 2020. "Synchronizing Last Trains of Urban Rail Transit System to Better Serve Passengers from Late Night Trains of High-Speed Railway Lines," Networks and Spatial Economics, Springer, vol. 20(2), pages 599-633, June.
    10. Wanqi Wang & Yun Bao & Sihui Long, 2022. "Rescheduling Urban Rail Transit Trains to Serve Passengers from Uncertain Delayed High-Speed Railway Trains," Sustainability, MDPI, vol. 14(9), pages 1-20, May.
    11. Yanan Zhang & Zhaopeng Meng & Yan Zheng & Anca Ralescu, 2019. "Schedule optimization under fuzzy constraints of vehicle capacity," Fuzzy Optimization and Decision Making, Springer, vol. 18(2), pages 131-150, June.
    12. Jian Li & Lu Zhang & Bu Liu & Ningning Shi & Liang Li & Haodong Yin, 2023. "Travel-Energy-Based Timetable Optimization in Urban Subway Systems," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    13. Zheng, Hankun & Sun, Huijun & Kang, Liujiang & Dai, Peiling & Wu, Jianjun, 2023. "Multi-route coordination for bus systems in response to road disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    14. Pan Shang & Yu Yao & Liya Yang & Lingyun Meng & Pengli Mo, 2021. "Integrated Model for Timetabling and Circulation Planning on an Urban Rail Transit Line: a Coupled Network-Based Flow Formulation," Networks and Spatial Economics, Springer, vol. 21(2), pages 331-364, June.
    15. Kang, Liujiang & Li, Hao & Sun, Huijun & Wu, Jianjun & Cao, Zhiguang & Buhigiro, Nsabimana, 2021. "First train timetabling and bus service bridging in intermodal bus-and-train transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 443-462.
    16. Li, Shukai & Zhou, Xuesong & Yang, Lixing & Gao, Ziyou, 2018. "Automatic train regulation of complex metro networks with transfer coordination constraints: A distributed optimal control framework," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 228-253.
    17. Gkiotsalitis, K. & Alesiani, F., 2019. "Robust timetable optimization for bus lines subject to resource and regulatory constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 30-51.
    18. Hu, Yuting & Li, Shukai & Dessouky, Maged M. & Yang, Lixing & Gao, Ziyou, 2022. "Computationally efficient train timetable generation of metro networks with uncertain transfer walking time to reduce passenger waiting time: A generalized Benders decomposition-based method," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 210-231.
    19. Liu, Tao & Ceder, Avishai (Avi), 2018. "Integrated public transport timetable synchronization and vehicle scheduling with demand assignment: A bi-objective bi-level model using deficit function approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 935-955.
    20. Omar J. Ibarra-Rojas & Fernando López-Irarragorri & Yasmin A. Rios-Solis, 2016. "Multiperiod Bus Timetabling," Transportation Science, INFORMS, vol. 50(3), pages 805-822, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:96:y:2017:i:c:p:46-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.