IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v535y2019ics0378437119313172.html
   My bibliography  Save this article

Measuring the connectedness of European electricity markets using the network topology of variance decompositions

Author

Listed:
  • Xiao, Binqing
  • Yang, Ye
  • Peng, Xuerong
  • Fang, Libing

Abstract

The United Kingdom’s 2016 decision to exit the European Union (Brexit)has emphasized the need to comprehend systemic risk in Europe. The liberalization of the European electricity markets has drawn much attention. This study uses the network topology of variance decompositions to research the connectedness of the European electricity markets. Our results show that the European electricity markets experienced relatively high connectedness during the sample period from 2013 to the end of 2017. The analysis of the network connectedness suggests that regulators could identify the markets that most threaten system stability.

Suggested Citation

  • Xiao, Binqing & Yang, Ye & Peng, Xuerong & Fang, Libing, 2019. "Measuring the connectedness of European electricity markets using the network topology of variance decompositions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
  • Handle: RePEc:eee:phsmap:v:535:y:2019:i:c:s0378437119313172
    DOI: 10.1016/j.physa.2019.122279
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119313172
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122279?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    2. Francis X. Diebold & Kamil Yilmaz, 2013. "Measuring the Dynamics of Global Business Cycle Connectedness," PIER Working Paper Archive 13-070, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    3. Jonathan A. Batten & Cetin Ciner & Brian M. Lucey, 2015. "Which precious metals spill over on which, when and why? Some evidence," Applied Economics Letters, Taylor & Francis Journals, vol. 22(6), pages 466-473, April.
    4. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    5. Omri, Anis, 2014. "An international literature survey on energy-economic growth nexus: Evidence from country-specific studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 951-959.
    6. Ozturk, Ilhan, 2010. "A literature survey on energy-growth nexus," Energy Policy, Elsevier, vol. 38(1), pages 340-349, January.
    7. Luc Bauwens & Christian M. Hafner & Diane Pierret, 2013. "Multivariate Volatility Modeling Of Electricity Futures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 743-761, August.
    8. Ewing, Bradley T. & Payne, James E. & Caporin, Massimilano, 2022. "The Asymmetric Impact of Oil Prices and Production on Drilling Rig Trajectory: A correction," Resources Policy, Elsevier, vol. 79(C).
    9. Ji, Qiang & Zhang, Dayong, 2019. "How much does financial development contribute to renewable energy growth and upgrading of energy structure in China?," Energy Policy, Elsevier, vol. 128(C), pages 114-124.
    10. Davide Ciferri & Maria Chiara D’Errico & Paolo Polinori, 2020. "Integration and convergence in European electricity markets," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 37(2), pages 463-492, July.
    11. Reboredo, Juan C. & Ugolini, Andrea, 2015. "Systemic risk in European sovereign debt markets: A CoVaR-copula approach," Journal of International Money and Finance, Elsevier, vol. 51(C), pages 214-244.
    12. Bhanot, Karan & Burns, Natasha & Hunter, Delroy & Williams, Michael, 2014. "News spillovers from the Greek debt crisis: Impact on the Eurozone financial sector," Journal of Banking & Finance, Elsevier, vol. 38(C), pages 51-63.
    13. Balaguer, Jacint, 2011. "Cross-border integration in the European electricity market. Evidence from the pricing behavior of Norwegian and Swiss exporters," Energy Policy, Elsevier, vol. 39(9), pages 4703-4712, September.
    14. Efimova, Olga & Serletis, Apostolos, 2014. "Energy markets volatility modelling using GARCH," Energy Economics, Elsevier, vol. 43(C), pages 264-273.
    15. Luo, Jiawen & Ji, Qiang, 2018. "High-frequency volatility connectedness between the US crude oil market and China's agricultural commodity markets," Energy Economics, Elsevier, vol. 76(C), pages 424-438.
    16. Wei, Yu & Qin, Songkun & Li, Xiafei & Zhu, Sha & Wei, Guiwu, 2019. "Oil price fluctuation, stock market and macroeconomic fundamentals: Evidence from China before and after the financial crisis," Finance Research Letters, Elsevier, vol. 30(C), pages 23-29.
    17. repec:dau:papers:123456789/5450 is not listed on IDEAS
    18. Ma, Feng & Liao, Yin & Zhang, Yaojie & Cao, Yang, 2019. "Harnessing jump component for crude oil volatility forecasting in the presence of extreme shocks," Journal of Empirical Finance, Elsevier, vol. 52(C), pages 40-55.
    19. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    20. Zhang, Dayong & Ji, Qiang & Kutan, Ali M., 2019. "Dynamic transmission mechanisms in global crude oil prices: Estimation and implications," Energy, Elsevier, vol. 175(C), pages 1181-1193.
    21. Zhang, Bing & Wang, Peijie, 2014. "Return and volatility spillovers between china and world oil markets," Economic Modelling, Elsevier, vol. 42(C), pages 413-420.
    22. de Menezes, Lilian M. & Houllier, Melanie A., 2016. "Reassessing the integration of European electricity markets: A fractional cointegration analysis," Energy Economics, Elsevier, vol. 53(C), pages 132-150.
    23. Feng Ma & Yu Wei & Li Liu & Dengshi Huang, 2018. "Forecasting realized volatility of oil futures market: A new insight," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(4), pages 419-436, July.
    24. Ji, Qiang & Geng, Jiang-Bo & Tiwari, Aviral Kumar, 2018. "Information spillovers and connectedness networks in the oil and gas markets," Energy Economics, Elsevier, vol. 75(C), pages 71-84.
    25. Bunn, Derek W. & Gianfreda, Angelica, 2010. "Integration and shock transmissions across European electricity forward markets," Energy Economics, Elsevier, vol. 32(2), pages 278-291, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hasan, Mudassar & Arif, Muhammad & Naeem, Muhammad Abubakr & Ngo, Quang-Thanh & Taghizadeh–Hesary, Farhad, 2021. "Time-frequency connectedness between Asian electricity sectors," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 208-224.
    2. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    3. Karkowska, Renata & Urjasz, Szczepan, 2021. "Connectedness structures of sovereign bond markets in Central and Eastern Europe," International Review of Financial Analysis, Elsevier, vol. 74(C).
    4. Muhammad Abubakr Naeem & Sitara Karim & Tooraj Jamasb & Rabindra Nepal, 2022. "Risk transmission between green markets and commodities," CAMA Working Papers 2022-18, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    5. Tadahiro Nakajima & Yuki Toyoshima, 2020. "Examination of the Spillover Effects among Natural Gas and Wholesale Electricity Markets Using Their Futures with Different Maturities and Spot Prices," Energies, MDPI, vol. 13(7), pages 1-14, March.
    6. Naeem, Muhammad Abubakr & Karim, Sitara & Hasan, Mudassar & Lucey, Brian M. & Kang, Sang Hoon, 2022. "Nexus between oil shocks and agriculture commodities: Evidence from time and frequency domain," Energy Economics, Elsevier, vol. 112(C).
    7. Ma, Rufei & Liu, Zhenhua & Zhai, Pengxiang, 2022. "Does economic policy uncertainty drive volatility spillovers in electricity markets: Time and frequency evidence," Energy Economics, Elsevier, vol. 107(C).
    8. Mensi, Walid & Naeem, Muhammad Abubakr & Vo, Xuan Vinh & Kang, Sang Hoon, 2022. "Dynamic and frequency spillovers between green bonds, oil and G7 stock markets: Implications for risk management," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 331-344.
    9. Sikorska-Pastuszka, Magdalena & Papież, Monika, 2023. "Dynamic volatility connectedness in the European electricity market," Energy Economics, Elsevier, vol. 127(PA).
    10. Bouri, Elie & Lucey, Brian & Saeed, Tareq & Vo, Xuan Vinh, 2020. "Extreme spillovers across Asian-Pacific currencies: A quantile-based analysis," International Review of Financial Analysis, Elsevier, vol. 72(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Keyu & Guo, Qiang & Li, Xiafei, 2022. "Can the return connectedness indices from grey energy to natural gas help to forecast the natural gas returns?," Energy Economics, Elsevier, vol. 109(C).
    2. Gong, Xu & Liu, Yun & Wang, Xiong, 2021. "Dynamic volatility spillovers across oil and natural gas futures markets based on a time-varying spillover method," International Review of Financial Analysis, Elsevier, vol. 76(C).
    3. Wei, Yu & Zhang, Yaojie & Wang, Yudong, 2022. "Information connectedness of international crude oil futures: Evidence from SC, WTI, and Brent," International Review of Financial Analysis, Elsevier, vol. 81(C).
    4. Jiasha Fu & Hui Qiao, 2022. "The Time-Varying Connectedness Between China’s Crude Oil Futures and International Oil Markets: A Return and Volatility Spillover Analysis," Letters in Spatial and Resource Sciences, Springer, vol. 15(3), pages 341-376, December.
    5. Ma, Rufei & Liu, Zhenhua & Zhai, Pengxiang, 2022. "Does economic policy uncertainty drive volatility spillovers in electricity markets: Time and frequency evidence," Energy Economics, Elsevier, vol. 107(C).
    6. Han, Lin & Kordzakhia, Nino & Trück, Stefan, 2020. "Volatility spillovers in Australian electricity markets," Energy Economics, Elsevier, vol. 90(C).
    7. Sikorska-Pastuszka, Magdalena & Papież, Monika, 2023. "Dynamic volatility connectedness in the European electricity market," Energy Economics, Elsevier, vol. 127(PA).
    8. Song, Yingjie & Ji, Qiang & Du, Ya-Juan & Geng, Jiang-Bo, 2019. "The dynamic dependence of fossil energy, investor sentiment and renewable energy stock markets," Energy Economics, Elsevier, vol. 84(C).
    9. Lee, Chien-Chiang & Zhou, Hegang & Xu, Chao & Zhang, Xiaoming, 2023. "Dynamic spillover effects among international crude oil markets from the time-frequency perspective," Resources Policy, Elsevier, vol. 80(C).
    10. Li, Xiafei & Li, Bo & Wei, Guiwu & Bai, Lan & Wei, Yu & Liang, Chao, 2021. "Return connectedness among commodity and financial assets during the COVID-19 pandemic: Evidence from China and the US," Resources Policy, Elsevier, vol. 73(C).
    11. Sun, Chuanwang & Min, Jialin & Sun, Jiacheng & Gong, Xu, 2023. "The role of China's crude oil futures in world oil futures market and China's financial market," Energy Economics, Elsevier, vol. 120(C).
    12. Shi Chen & Wolfgang Karl Hardle & Brenda L'opez Cabrera, 2020. "Regularization Approach for Network Modeling of German Power Derivative Market," Papers 2009.09739, arXiv.org.
    13. Dai, Zhifeng & Tang, Rui & Zhang, Xiaotong, 2023. "A new multilayer network for measuring interconnectedness among the energy firms," Energy Economics, Elsevier, vol. 124(C).
    14. Caporin, Massimiliano & Naeem, Muhammad Abubakr & Arif, Muhammad & Hasan, Mudassar & Vo, Xuan Vinh & Hussain Shahzad, Syed Jawad, 2021. "Asymmetric and time-frequency spillovers among commodities using high-frequency data," Resources Policy, Elsevier, vol. 70(C).
    15. Okorie, David Iheke & Lin, Boqiang, 2022. "Givers never lack: Nigerian oil & gas asymmetric network analyses," Energy Economics, Elsevier, vol. 108(C).
    16. Wang, Yilin & Zhang, Zeming & Li, Xiafei & Chen, Xiaodan & Wei, Yu, 2020. "Dynamic return connectedness across global commodity futures markets: Evidence from time and frequency domains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    17. Dai, Zhifeng & Zhu, Haoyang, 2023. "Dynamic risk spillover among crude oil, economic policy uncertainty and Chinese financial sectors," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 421-450.
    18. Do, Hung Xuan & Nepal, Rabindra & Pham, Son Duy & Jamasb, Tooraj, 2023. "Electricity Market Crisis in Europe and Cross Border Price Effects: A Quantile Return Connectedness Analysis," Working Papers 8-2023, Copenhagen Business School, Department of Economics.
    19. Wang, Gang-Jin & Xie, Chi & Zhao, Longfeng & Jiang, Zhi-Qiang, 2018. "Volatility connectedness in the Chinese banking system: Do state-owned commercial banks contribute more?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 57(C), pages 205-230.
    20. Ji, Qiang & Bahloul, Walid & Geng, Jiang-Bo & Gupta, Rangan, 2020. "Trading behaviour connectedness across commodity markets: Evidence from the hedgers’ sentiment perspective," Research in International Business and Finance, Elsevier, vol. 52(C).

    More about this item

    Keywords

    Risk measurement; European electricity markets; Connectedness; Variance decompositions;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:535:y:2019:i:c:s0378437119313172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.