Advanced Search
MyIDEAS: Login

Additivity in minimum cost spanning tree problems

Contents:

Author Info

  • Bergantiños, Gustavo
  • Vidal-Puga, Juan

Abstract

We characterize a rule in minimum cost spanning tree problems using an additivity property and some basic properties. If the set of possible agents has at least three agents, these basic properties are symmetry and separability. If the set of possible agents has two agents, we must add positivity.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6VBY-4SP3SVC-4/2/96731828a19d3c247f492e0c6e5c330c
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Journal of Mathematical Economics.

Volume (Year): 45 (2009)
Issue (Month): 1-2 (January)
Pages: 38-42

as in new window
Handle: RePEc:eee:mateco:v:45:y:2009:i:1-2:p:38-42

Contact details of provider:
Web page: http://www.elsevier.com/locate/jmateco

Related research

Keywords: Minimum cost spanning tree problems Additivity;

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Feltkamp, V. & Tijs, S.H. & Muto, S., 1994. "On the irreducible core and the equal remaining obligations rule of minimum cost spanning extension problems," Discussion Paper 1994-106, Tilburg University, Center for Economic Research.
  2. Dutta, Bhaskar & Kar, Anirban, 2002. "Cost Monotonicity, Consistency And Minimum Cost Spanning Tree Games," The Warwick Economics Research Paper Series (TWERPS) 629, University of Warwick, Department of Economics.
  3. Bergantinos, Gustavo & Vidal-Puga, Juan J., 2007. "A fair rule in minimum cost spanning tree problems," Journal of Economic Theory, Elsevier, vol. 137(1), pages 326-352, November.
  4. Brânzei, R. & Moretti, S. & Norde, H.W. & Tijs, S.H., 2004. "The P-value for cost sharing in minimum cost spanning tree situations," Open Access publications from Tilburg University urn:nbn:nl:ui:12-142598, Tilburg University.
  5. Norde, H.W. & Moretti, S. & Tijs, S.H., 2004. "Minimum cost spanning tree games and population monotonic allocation schemes," Open Access publications from Tilburg University urn:nbn:nl:ui:12-123753, Tilburg University.
  6. Gustavo Bergantiños & Juan Vidal-Puga, 2007. "The optimistic TU game in minimum cost spanning tree problems," International Journal of Game Theory, Springer, vol. 36(2), pages 223-239, October.
  7. Daniel Granot & Michael Maschler, 1998. "Spanning network games," International Journal of Game Theory, Springer, vol. 27(4), pages 467-500.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Jens Leth Hougaard & Mich Tvede, 2010. "Strategyproof Nash Equilibria in Minimum Cost Spanning Tree Models," MSAP Working Paper Series 01_2010, University of Copenhagen, Department of Food and Resource Economics.
  2. Bergantiños, Gustavo & Lorenzo, Leticia & Lorenzo-Freire, Silvia, 2011. "A generalization of obligation rules for minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 211(1), pages 122-129, May.
  3. Trudeau, Christian, 2012. "A new stable and more responsive cost sharing solution for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 75(1), pages 402-412.
  4. Bergantiños, Gustavo & Kar, Anirban, 2010. "On obligation rules for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 69(2), pages 224-237, July.
  5. Gustavo Bergantiños & Leticia Lorenzo & Silvia Lorenzo-Freire, 2010. "The family of cost monotonic and cost additive rules in minimum cost spanning tree problems," Social Choice and Welfare, Springer, vol. 34(4), pages 695-710, April.
  6. Bergantiños, Gustavo & Vidal-Puga, Juan, 2012. "Characterization of monotonic rules in minimum cost spanning tree problems," MPRA Paper 39994, University Library of Munich, Germany.
  7. Christian Trudeau, 2013. "Characterizations of the cycle-complete and folk solutions for minimum cost spanning tree problems," Working Papers 1303, University of Windsor, Department of Economics.
  8. Hougaard, Jens Leth & Tvede, Mich, 2012. "Truth-telling and Nash equilibria in minimum cost spanning tree models," European Journal of Operational Research, Elsevier, vol. 222(3), pages 566-570.
  9. María Gómez-Rúa, 2012. "Sharing a polluted river network through environmental taxes," Economics Bulletin, AccessEcon, vol. 32(1), pages 992-1000.
  10. Bergantiños, G. & Gómez-Rúa, M. & Llorca, N. & Pulido, M. & Sánchez-Soriano, J., 2014. "A new rule for source connection problems," European Journal of Operational Research, Elsevier, vol. 234(3), pages 780-788.
  11. Hernández, Penélope & Peris, Josep E. & Silva-Reus, José A., 2012. "Strategic Sharing of a Costly Network," QM&ET Working Papers 12-10, Universidad de Alicante, Departamento de Métodos Cuantitativos y Teoría Económica.
  12. Gustavo Bergantiños & María Gómez-Rúa, 2010. "Minimum cost spanning tree problems with groups," Economic Theory, Springer, vol. 43(2), pages 227-262, May.
  13. María Gómez-Rúa, 2013. "Sharing a polluted river through environmental taxes," SERIEs, Spanish Economic Association, vol. 4(2), pages 137-153, June.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:45:y:2009:i:1-2:p:38-42. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.