Advanced Search
MyIDEAS: Login

Additivity in cost spanning tree problems

Contents:

Author Info

  • Gustavo Bergantiños

    (Universidade de Vigo)

  • Juan Vidal-Puga

    (Universidade de Vigo)

Abstract

We characterize a rule in cost spanning tree problems using an additivity property and some basic properties. If the set of possible agents has at least three agents, these basic properties are symmetry and separability. If the set of possible agents has two agents, we must add positivity. In both characterizations we can replace separability by population monotonicity.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://128.118.178.162/eps/game/papers/0405/0405001.pdf
Download Restriction: no

Bibliographic Info

Paper provided by EconWPA in its series Game Theory and Information with number 0405001.

as in new window
Length: 22 pages
Date of creation: 04 May 2004
Date of revision:
Handle: RePEc:wpa:wuwpga:0405001

Note: Type of Document - pdf; pages: 22
Contact details of provider:
Web page: http://128.118.178.162

Related research

Keywords: cost spanning tree problems additivity characterization;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Norde, Henk & Moretti, Stefano & Tijs, Stef, 2004. "Minimum cost spanning tree games and population monotonic allocation schemes," European Journal of Operational Research, Elsevier, vol. 154(1), pages 84-97, April.
  2. Bergantinos, Gustavo & Vidal-Puga, Juan J., 2004. "Additive rules in bankruptcy problems and other related problems," Mathematical Social Sciences, Elsevier, vol. 47(1), pages 87-101, January.
  3. Stefano Moretti & Rodica Branzei & Henk Norde & Stef Tijs, 2004. "The P-value for cost sharing in minimum," Theory and Decision, Springer, vol. 56(2_2), pages 47-61, 02.
  4. Feltkamp, V. & Tijs, S.H. & Muto, S., 1994. "On the irreducible core and the equal remaining obligations rule of minimum cost spanning extension problems," Discussion Paper 1994-106, Tilburg University, Center for Economic Research.
  5. Bhaskar Dutta & Anirban Kar, 2002. "Cost monotonicity, consistency and minimum cost spanning tree games," Indian Statistical Institute, Planning Unit, New Delhi Discussion Papers 02-04, Indian Statistical Institute, New Delhi, India.
  6. Moulin Herve & Shenker Scott, 1994. "Average Cost Pricing versus Serial Cost Sharing: An Axiomatic Comparison," Journal of Economic Theory, Elsevier, vol. 64(1), pages 178-201, October.
  7. Daniel Granot & Michael Maschler, 1998. "Spanning network games," International Journal of Game Theory, Springer, vol. 27(4), pages 467-500.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Tijs, S.H. & Brânzei, R. & Moretti, S. & Norde, H.W., 2004. "Obligation Rules for Minimum Cost Spanning Tree Situations and their Monotonicity Properties," Discussion Paper 2004-53, Tilburg University, Center for Economic Research.
  2. Gustavo Bergantinos & Juan Vidal-Puga, 2008. "On Some Properties of Cost Allocation Rules in Minimum Cost Spanning Tree Problems," Czech Economic Review, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, vol. 2(3), pages 251-267, December.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpga:0405001. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.