IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v158y2019icp2-17.html
   My bibliography  Save this article

Direct sizing and characterization of Energy Storage Systems in the Energy-Power plane

Author

Listed:
  • Cabello, Javier M.
  • Roboam, Xavier
  • Junco, Sergio
  • Turpin, Christophe

Abstract

This paper presents an original sizing method for Energy Storage Systems (ESS) based on directly matching their capabilities – as specified by their energy-power Safe Operation Area (SOA) in the Energy-Power (EP) plane – with the energy and power demand required to accomplish their missions. Starting from the system requirements and from an energy management strategy, the power demanded by a set of representative operating scenarios and its associated energy are calculated and represented as trajectories in the EP plane. The objective is to size the ESS such as its SOA contains these trajectories. Comparison between different technologies of Energy Storage Devices (ESDs) is possible using this SOA characterization. Special attention should be paid to compare specific SOAs across devices. Diverse energy management strategies can be synthesized in the EP plane where they can be compared and analyzed. The sizing method converges extremely fast and is suitable for its integration in an optimization loop. The method allows to determine directly and efficiently the technology and the size most appropriate (in terms of indicators such as mass or cost) to a given EP demand. In the paper, three different technologies (SuperCapacitor, Li-Ion and H2∕O2 batteries) are characterized and compared in terms of sizing synthesis.

Suggested Citation

  • Cabello, Javier M. & Roboam, Xavier & Junco, Sergio & Turpin, Christophe, 2019. "Direct sizing and characterization of Energy Storage Systems in the Energy-Power plane," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 158(C), pages 2-17.
  • Handle: RePEc:eee:matcom:v:158:y:2019:i:c:p:2-17
    DOI: 10.1016/j.matcom.2018.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475418300880
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2018.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Haoran & Wu, Qiuwei & Hu, Shuju & Xu, Honghua & Rasmussen, Claus Nygaard, 2015. "Review of energy storage system for wind power integration support," Applied Energy, Elsevier, vol. 137(C), pages 545-553.
    2. Ferreira, Helder Lopes & Garde, Raquel & Fulli, Gianluca & Kling, Wil & Lopes, Joao Pecas, 2013. "Characterisation of electrical energy storage technologies," Energy, Elsevier, vol. 53(C), pages 288-298.
    3. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos, 2016. "Electrical energy storage systems in electricity generation: Energy policies, innovative technologies, and regulatory regimes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1044-1067.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlo Bianca, 2022. "On the Modeling of Energy-Multisource Networks by the Thermostatted Kinetic Theory Approach: A Review with Research Perspectives," Energies, MDPI, vol. 15(21), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antweiler, Werner, 2021. "Microeconomic models of electricity storage: Price Forecasting, arbitrage limits, curtailment insurance, and transmission line utilization," Energy Economics, Elsevier, vol. 101(C).
    2. Simpson, J.G. & Hanrahan, G. & Loth, E. & Koenig, G.M. & Sadoway, D.R., 2021. "Liquid metal battery storage in an offshore wind turbine: Concept and economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Li, Jianwei & Yang, Qingqing & Robinson, Francis. & Liang, Fei & Zhang, Min & Yuan, Weijia, 2017. "Design and test of a new droop control algorithm for a SMES/battery hybrid energy storage system," Energy, Elsevier, vol. 118(C), pages 1110-1122.
    5. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren, 2017. "Overview of wind power intermittency: Impacts, measurements, and mitigation solutions," Applied Energy, Elsevier, vol. 204(C), pages 47-65.
    6. Hemmati, Reza & Saboori, Hedayat & Saboori, Saeid, 2016. "Assessing wind uncertainty impact on short term operation scheduling of coordinated energy storage systems and thermal units," Renewable Energy, Elsevier, vol. 95(C), pages 74-84.
    7. Xiaotong Qie & Rui Zhang & Yanyong Hu & Xialing Sun & Xue Chen, 2021. "A Multi-Criteria Decision-Making Approach for Energy Storage Technology Selection Based on Demand," Energies, MDPI, vol. 14(20), pages 1-29, October.
    8. Chong, Lee Wai & Wong, Yee Wan & Rajkumar, Rajprasad Kumar & Rajkumar, Rajpartiban Kumar & Isa, Dino, 2016. "Hybrid energy storage systems and control strategies for stand-alone renewable energy power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 174-189.
    9. Roy, Sanjoy, 2020. "A technical perspective on variability costs: Dependence on power variability and cross-correlations," Energy, Elsevier, vol. 198(C).
    10. Bullich-Massagué, Eduard & Cifuentes-García, Francisco-Javier & Glenny-Crende, Ignacio & Cheah-Mañé, Marc & Aragüés-Peñalba, Mònica & Díaz-González, Francisco & Gomis-Bellmunt, Oriol, 2020. "A review of energy storage technologies for large scale photovoltaic power plants," Applied Energy, Elsevier, vol. 274(C).
    11. Colmenar-Santos, Antonio & Molina-Ibáñez, Enrique-Luis & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Legislative and economic aspects for the inclusion of energy reserve by a superconducting magnetic energy storage: Application to the case of the Spanish electrical system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2455-2470.
    12. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
    13. Cheng, Meng & Sami, Saif Sabah & Wu, Jianzhong, 2017. "Benefits of using virtual energy storage system for power system frequency response," Applied Energy, Elsevier, vol. 194(C), pages 376-385.
    14. Nyong-Bassey, Bassey Etim & Giaouris, Damian & Patsios, Charalampos & Papadopoulou, Simira & Papadopoulos, Athanasios I. & Walker, Sara & Voutetakis, Spyros & Seferlis, Panos & Gadoue, Shady, 2020. "Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty," Energy, Elsevier, vol. 193(C).
    15. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    16. Liu, Jin-Long & Wang, Jian-Hua, 2015. "Thermodynamic analysis of a novel tri-generation system based on compressed air energy storage and pneumatic motor," Energy, Elsevier, vol. 91(C), pages 420-429.
    17. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    18. Sadi, M. & Arabkoohsar, A., 2019. "Exergoeconomic analysis of a combined solar-waste driven power plant," Renewable Energy, Elsevier, vol. 141(C), pages 883-893.
    19. Vorushylo, Inna & Keatley, Patrick & Shah, Nikhilkumar & Green, Richard & Hewitt, Neil, 2018. "How heat pumps and thermal energy storage can be used to manage wind power: A study of Ireland," Energy, Elsevier, vol. 157(C), pages 539-549.
    20. Evgeny Lisin & Wadim Strielkowski & Veronika Chernova & Alena Fomina, 2018. "Assessment of the Territorial Energy Security in the Context of Energy Systems Integration," Energies, MDPI, vol. 11(12), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:158:y:2019:i:c:p:2-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.