IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6592-d655185.html
   My bibliography  Save this article

A Multi-Criteria Decision-Making Approach for Energy Storage Technology Selection Based on Demand

Author

Listed:
  • Xiaotong Qie

    (School of Management, China University of Mining and Technology, Beijing 100083, China)

  • Rui Zhang

    (School of Management, China University of Mining and Technology, Beijing 100083, China)

  • Yanyong Hu

    (School of Management, China University of Mining and Technology, Beijing 100083, China)

  • Xialing Sun

    (School of Management, China University of Mining and Technology, Beijing 100083, China)

  • Xue Chen

    (School of Management, China University of Mining and Technology, Beijing 100083, China)

Abstract

Energy storage technologies can reduce grid fluctuations through peak shaving and valley filling and effectively solve the problems of renewable energy storage and consumption. The application of energy storage technologies is aimed at storing energy and supplying energy when needed according to the storage requirements. The existing research focuses on ranking technologies and selecting the best technologies, while ignoring storage requirements. Here, we propose a multi-criteria decision-making (MCDM) framework for selecting a suitable technology based on certain storage requirements. Specifically, we consider nine criteria in four aspects: technological, economic, environmental, and social. The interval number, crisp number, and linguist terms can be transformed into a probabilistic dual hesitant fuzzy set (PDHFS) through the transformation and fusion method we proposed, and a suitable technology can be selected through distance measurements. Subsequently, the proposed method is applied in a representative case study for energy storage technology selection in Shanxi Province, and a sensitivity analysis gives different scenarios for elaboration. The results show that the optimal selection of energy storage technology is different under different storage requirement scenarios. The decision-making model presented herein is considered to be versatile and adjustable, and thus, it can help decision makers to select a suitable energy storage technology based on the requirements of any given use case.

Suggested Citation

  • Xiaotong Qie & Rui Zhang & Yanyong Hu & Xialing Sun & Xue Chen, 2021. "A Multi-Criteria Decision-Making Approach for Energy Storage Technology Selection Based on Demand," Energies, MDPI, vol. 14(20), pages 1-29, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6592-:d:655185
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6592/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6592/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Siraj Sabihuddin & Aristides E. Kiprakis & Markus Mueller, 2014. "A Numerical and Graphical Review of Energy Storage Technologies," Energies, MDPI, vol. 8(1), pages 1-45, December.
    2. Bin Zhu & Zeshui Xu & Meimei Xia, 2012. "Dual Hesitant Fuzzy Sets," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-13, May.
    3. Poullikkas, Andreas, 2013. "A comparative overview of large-scale battery systems for electricity storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 778-788.
    4. Benitez, Liliana E. & Benitez, Pablo C. & van Kooten, G. Cornelis, 2008. "The economics of wind power with energy storage," Energy Economics, Elsevier, vol. 30(4), pages 1973-1989, July.
    5. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    6. Kaldellis, J.K. & Zafirakis, D., 2007. "Optimum energy storage techniques for the improvement of renewable energy sources-based electricity generation economic efficiency," Energy, Elsevier, vol. 32(12), pages 2295-2305.
    7. Deveci, Muhammet & Cali, Umit & Kucuksari, Sadik & Erdogan, Nuh, 2020. "Interval type-2 fuzzy sets based multi-criteria decision-making model for offshore wind farm development in Ireland," Energy, Elsevier, vol. 198(C).
    8. Kumar, Abhishek & Sah, Bikash & Singh, Arvind R. & Deng, Yan & He, Xiangning & Kumar, Praveen & Bansal, R.C., 2017. "A review of multi criteria decision making (MCDM) towards sustainable renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 596-609.
    9. Argyrou, Maria C. & Christodoulides, Paul & Kalogirou, Soteris A., 2018. "Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 804-821.
    10. Chia-Nan Wang & Van Thanh Nguyen & Hoang Tuyet Nhi Thai & Duy Hung Duong, 2018. "Multi-Criteria Decision Making (MCDM) Approaches for Solar Power Plant Location Selection in Viet Nam," Energies, MDPI, vol. 11(6), pages 1-27, June.
    11. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    12. Zhao, Haoran & Wu, Qiuwei & Hu, Shuju & Xu, Honghua & Rasmussen, Claus Nygaard, 2015. "Review of energy storage system for wind power integration support," Applied Energy, Elsevier, vol. 137(C), pages 545-553.
    13. Liu, Ming & Steven Tay, N.H. & Bell, Stuart & Belusko, Martin & Jacob, Rhys & Will, Geoffrey & Saman, Wasim & Bruno, Frank, 2016. "Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1411-1432.
    14. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    15. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    16. Ferreira, Helder Lopes & Garde, Raquel & Fulli, Gianluca & Kling, Wil & Lopes, Joao Pecas, 2013. "Characterisation of electrical energy storage technologies," Energy, Elsevier, vol. 53(C), pages 288-298.
    17. Ibrahim, H. & Ilinca, A. & Perron, J., 2008. "Energy storage systems--Characteristics and comparisons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1221-1250, June.
    18. Hadjipaschalis, Ioannis & Poullikkas, Andreas & Efthimiou, Venizelos, 2009. "Overview of current and future energy storage technologies for electric power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1513-1522, August.
    19. Giamalaki, Marina & Tsoutsos, Theocharis, 2019. "Sustainable siting of solar power installations in Mediterranean using a GIS/AHP approach," Renewable Energy, Elsevier, vol. 141(C), pages 64-75.
    20. Ren, Jingzheng, 2018. "Sustainability prioritization of energy storage technologies for promoting the development of renewable energy: A novel intuitionistic fuzzy combinative distance-based assessment approach," Renewable Energy, Elsevier, vol. 121(C), pages 666-676.
    21. Denis Sidorov & Fang Liu & Yonghui Sun, 2020. "Machine Learning for Energy Systems," Energies, MDPI, vol. 13(18), pages 1-6, September.
    22. Alizadeh, Reza & Soltanisehat, Leili & Lund, Peter D. & Zamanisabzi, Hamed, 2020. "Improving renewable energy policy planning and decision-making through a hybrid MCDM method," Energy Policy, Elsevier, vol. 137(C).
    23. Şengül, Ümran & Eren, Miraç & Eslamian Shiraz, Seyedhadi & Gezder, Volkan & Şengül, Ahmet Bilal, 2015. "Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey," Renewable Energy, Elsevier, vol. 75(C), pages 617-625.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bartosz Radomski & Tomasz Mróz, 2023. "Application of the Hybrid MCDM Method for Energy Modernisation of an Existing Public Building—A Case Study," Energies, MDPI, vol. 16(8), pages 1-18, April.
    2. Prabha Bhola & Alexandros-Georgios Chronis & Panos Kotsampopoulos & Nikos Hatziargyriou, 2023. "Business Model Selection for Community Energy Storage: A Multi Criteria Decision Making Approach," Energies, MDPI, vol. 16(18), pages 1-30, September.
    3. Nikita Dmitrievich Senchilo & Denis Anatolievich Ustinov, 2021. "Method for Determining the Optimal Capacity of Energy Storage Systems with a Long-Term Forecast of Power Consumption," Energies, MDPI, vol. 14(21), pages 1-25, October.
    4. Ander Zubiria & Álvaro Menéndez & Hans-Jürgen Grande & Pilar Meneses & Gregorio Fernández, 2022. "Multi-Criteria Decision-Making Problem for Energy Storage Technology Selection for Different Grid Applications," Energies, MDPI, vol. 15(20), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    2. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    3. Argyrou, Maria C. & Christodoulides, Paul & Kalogirou, Soteris A., 2018. "Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 804-821.
    4. Henok Ayele Behabtu & Maarten Messagie & Thierry Coosemans & Maitane Berecibar & Kinde Anlay Fante & Abraham Alem Kebede & Joeri Van Mierlo, 2020. "A Review of Energy Storage Technologies’ Application Potentials in Renewable Energy Sources Grid Integration," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    5. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    6. Martin, Nigel & Rice, John, 2021. "Power outages, climate events and renewable energy: Reviewing energy storage policy and regulatory options for Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    7. Saboori, Hedayat & Hemmati, Reza & Ghiasi, Seyyed Mohammad Sadegh & Dehghan, Shahab, 2017. "Energy storage planning in electric power distribution networks – A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1108-1121.
    8. Kapila, Sahil & Oni, Abayomi Olufemi & Kumar, Amit, 2017. "The development of techno-economic models for large-scale energy storage systems," Energy, Elsevier, vol. 140(P1), pages 656-672.
    9. Daniel Akinyele & Juri Belikov & Yoash Levron, 2017. "Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems," Energies, MDPI, vol. 10(11), pages 1-39, November.
    10. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Gaurav Chaudhary & Jacob J. Lamb & Odne S. Burheim & Bjørn Austbø, 2021. "Review of Energy Storage and Energy Management System Control Strategies in Microgrids," Energies, MDPI, vol. 14(16), pages 1-26, August.
    12. Morteza Zare Oskouei & Ayşe Aybike Şeker & Süleyman Tunçel & Emin Demirbaş & Tuba Gözel & Mehmet Hakan Hocaoğlu & Mehdi Abapour & Behnam Mohammadi-Ivatloo, 2022. "A Critical Review on the Impacts of Energy Storage Systems and Demand-Side Management Strategies in the Economic Operation of Renewable-Based Distribution Network," Sustainability, MDPI, vol. 14(4), pages 1-34, February.
    13. Saboori, Hedayat & Hemmati, Reza, 2017. "Maximizing DISCO profit in active distribution networks by optimal planning of energy storage systems and distributed generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 365-372.
    14. Kebede, Abraham Alem & Kalogiannis, Theodoros & Van Mierlo, Joeri & Berecibar, Maitane, 2022. "A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    15. Maria Symeonidou & Agis M. Papadopoulos, 2022. "Selection and Dimensioning of Energy Storage Systems for Standalone Communities: A Review," Energies, MDPI, vol. 15(22), pages 1-28, November.
    16. Gulam Smdani & Muhammad Remanul Islam & Ahmad Naim Ahmad Yahaya & Sairul Izwan Bin Safie, 2023. "Performance Evaluation Of Advanced Energy Storage Systems: A Review," Energy & Environment, , vol. 34(4), pages 1094-1141, June.
    17. Jarvinen, J. & Goldsworthy, M. & White, S. & Pudney, P. & Belusko, M. & Bruno, F., 2021. "Evaluating the utility of passive thermal storage as an energy storage system on the Australian energy market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    18. Dehghani-Sanij, A.R. & Tharumalingam, E. & Dusseault, M.B. & Fraser, R., 2019. "Study of energy storage systems and environmental challenges of batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 192-208.
    19. Poullikkas, Andreas, 2013. "A comparative overview of large-scale battery systems for electricity storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 778-788.
    20. Parra, David & Swierczynski, Maciej & Stroe, Daniel I. & Norman, Stuart.A. & Abdon, Andreas & Worlitschek, Jörg & O’Doherty, Travis & Rodrigues, Lucelia & Gillott, Mark & Zhang, Xiaojin & Bauer, Chris, 2017. "An interdisciplinary review of energy storage for communities: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 730-749.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6592-:d:655185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.