IDEAS home Printed from https://ideas.repec.org/a/eee/juipol/v49y2017icp104-115.html
   My bibliography  Save this article

Distributed electricity generation in Brazil: An analysis of policy context, design and impact

Author

Listed:
  • Gucciardi Garcez, Catherine

Abstract

This paper analyzes the policy landscape of a new configuration for the electricity sector, distributed electricity generation, DG, which was introduced in 2012 and regulated in Brazil by the National Electricity Regulation Agency (ANEEL) through a net-metering regulation. The present analysis focuses on the landscape surrounding the policy problem definition and the subsequent policy goals which were established by the national regulator as primarily related to removing barriers to grid access. The policy context surrounding DG in Brazil is analyzed within the broader scope of electricity planning goals, which is a responsibility of the Ministry of Mines and Energy and still shows strong preference to the centralized regime. The design of the net-metering mechanism and the impact of ANEEL's resolution in terms of the number and spatial distribution of the projects across states are also explored. Lastly, an econometric approach is taken by creating a linear regression model to decipher the determinants of successful policy deployment between states. The analysis shows that the electricity rates have an important impact, while the application of a state tax ICMS has negative effects on project uptake. The strength of solar resources was not a significant variable.

Suggested Citation

  • Gucciardi Garcez, Catherine, 2017. "Distributed electricity generation in Brazil: An analysis of policy context, design and impact," Utilities Policy, Elsevier, vol. 49(C), pages 104-115.
  • Handle: RePEc:eee:juipol:v:49:y:2017:i:c:p:104-115
    DOI: 10.1016/j.jup.2017.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0957178716300984
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jup.2017.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:idb:brikps:83716 is not listed on IDEAS
    2. Carley, Sanya, 2009. "Distributed generation: An empirical analysis of primary motivators," Energy Policy, Elsevier, vol. 37(5), pages 1648-1659, May.
    3. Sanya Carley & Tyler R. Browne, 2013. "Innovative US energy policy: a review of states' policy experiences," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(5), pages 488-506, September.
    4. Pinto, Aimé & Zilles, Roberto, 2014. "Reactive power excess charging in grid-connected PV systems in Brazil," Renewable Energy, Elsevier, vol. 62(C), pages 47-52.
    5. Mueller, Steffen, 2006. "Missing the spark: An investigation into the low adoption paradox of combined heat and power technologies," Energy Policy, Elsevier, vol. 34(17), pages 3153-3164, November.
    6. de Melo, Conrado Augustus & Jannuzzi, Gilberto de Martino & Bajay, Sergio Valdir, 2016. "Nonconventional renewable energy governance in Brazil: Lessons to learn from the German experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 222-234.
    7. Borchers, Allison M. & Xiarchos, Irene & Beckman, Jayson, 2014. "Determinants of wind and solar energy system adoption by U.S. farms: A multilevel modeling approach," Energy Policy, Elsevier, vol. 69(C), pages 106-115.
    8. Alagappan, L. & Orans, R. & Woo, C.K., 2011. "What drives renewable energy development?," Energy Policy, Elsevier, vol. 39(9), pages 5099-5104, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bruno Moreno Rodrigo de Freitas, 2020. "Quantifying the effect of regulated volumetric electriciy tariffs on residential PV adoption under net metering scheme," Working papers of CATT hal-02976874, HAL.
    2. Pina, Eduardo A. & Lozano, Miguel A. & Serra, Luis M., 2021. "Assessing the influence of legal constraints on the integration of renewable energy technologies in polygeneration systems for buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. de Oliveira Pinto Coelho, Eden & Aquila, Giancarlo & Bonatto, Benedito Donizeti & Balestrassi, Pedro Paulo & de Oliveira Pamplona, Edson & Nakamura, Wilson Toshiro, 2021. "Regulatory impact of photovoltaic prosumer policies in Brazil based on a financial risk analysis," Utilities Policy, Elsevier, vol. 70(C).
    4. Rosa, Carmen Brum & Rigo, Paula Donaduzzi & Rediske, Graciele & Moccellin, Ana Paula & Mairesse Siluk, Julio Cezar & Michels, Leandro, 2021. "How to measure organizational performance of distributed generation in electric utilities? The Brazilian case," Renewable Energy, Elsevier, vol. 169(C), pages 191-203.
    5. Bruno Moreno Rodrigo de Freitas, 2020. "Quantifying the effect of regulated volumetric electriciy tariffs on residential PV adoption under net metering scheme," Working Papers hal-02976874, HAL.
    6. Saher Javaid & Mineo Kaneko & Yasuo Tan, 2020. "Structural Condition for Controllable Power Flow System Containing Controllable and Fluctuating Power Devices," Energies, MDPI, vol. 13(7), pages 1-20, April.
    7. Rivera-Alvarez, Alejandro & Osorio, Julian D. & Montoya-Duque, Laura & Fontalvo, Jose & Botero, Edgar & Escudero-Atehortua, Ana, 2020. "Comparative analysis of natural gas cogeneration incentives on electricity production in Latin America," Energy Policy, Elsevier, vol. 142(C).
    8. Maestri, Cláudia Olímpia Neves Mamede & Andrade, Maria Elisabeth Moreira Carvalho, 2022. "Priorities for tariff compensation of distributed electricity generation in Brazil," Utilities Policy, Elsevier, vol. 76(C).
    9. Andrade, Jorge Vleberton Bessa de & Rodrigues, Bruno Noronha & Santos, Ivan Felipe Silva dos & Haddad, Jamil & Tiago Filho, Geraldo Lúcio, 2020. "Constitutional aspects of distributed generation policies for promoting Brazilian economic development," Energy Policy, Elsevier, vol. 143(C).
    10. Duran, Asligul Serasu & Sahinyazan, Feyza G., 2021. "An analysis of renewable mini-grid projects for rural electrification," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    11. Yubo Guo & Igor Martek & Chuan Chen, 2019. "Policy Evolution in the Chinese PPP Market: The Shifting Strategies of Governmental Support Measures," Sustainability, MDPI, vol. 11(18), pages 1-24, September.
    12. Rigo, Paula D. & Siluk, Julio Cezar M. & Lacerda, Daniel P. & Spellmeier, Júlia P., 2022. "Competitive business model of photovoltaic solar energy installers in Brazil," Renewable Energy, Elsevier, vol. 181(C), pages 39-50.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brown, Jason P. & Coupal, Roger & Hitaj, Claudia & Kelsey, Timothy W. & Krannich, Richard S. & Xiarchos, Irene M., 2017. "New Dynamics in Fossil Fuel and Renewable Energy for Rural America," USDA Miscellaneous 260676, United States Department of Agriculture.
    2. Jenner, Steffen & Groba, Felix & Indvik, Joe, 2013. "Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries," Energy Policy, Elsevier, vol. 52(C), pages 385-401.
    3. Cowan, Kelly R. & Daim, Tugrul U., 2011. "Review of technology acquisition and adoption research in the energy sector," Technology in Society, Elsevier, vol. 33(3), pages 183-199.
    4. Pätäri, Satu & Puumalainen, Kaisu & Jantunen, Ari & Sandstrüm, Jaana, 2011. "The interface of the energy and forest sectors--Potential players in the bioenergy business," International Journal of Production Economics, Elsevier, vol. 131(1), pages 322-332, May.
    5. Shan Zhou & Douglas S. Noonan, 2019. "Justice Implications of Clean Energy Policies and Programs in the United States: A Theoretical and Empirical Exploration," Sustainability, MDPI, vol. 11(3), pages 1-20, February.
    6. Siler-Evans, Kyle & Morgan, M. Granger & Azevedo, Inês Lima, 2012. "Distributed cogeneration for commercial buildings: Can we make the economics work?," Energy Policy, Elsevier, vol. 42(C), pages 580-590.
    7. Eduardo Vicente Mendoza Merch n & Mois s David Vel squez Guti rrez & Diego Armando Medina Montenegro & Jos Ricardo Nu ez Alvarez & John William Grimaldo Guerrero, 2020. "An Analysis of Electricity Generation with Renewable Resources in Germany," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 361-367.
    8. Oei, Pao-Yu & Hermann, Hauke & Herpich, Philipp & Holtemöller, Oliver & Lünenbürger, Benjamin & Schult, Christoph, 2020. "Coal phase-out in Germany – Implications and policies for affected regions," Energy, Elsevier, vol. 196(C).
    9. Streimikiene, Dalia & Baležentis, Tomas, 2013. "Multi-criteria assessment of small scale CHP technologies in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 183-189.
    10. Peterson, Mark & Feldman, David, 2018. "Citizen preferences for possible energy policies at the national and state levels," Energy Policy, Elsevier, vol. 121(C), pages 80-91.
    11. López-González, A. & Domenech, B. & Ferrer-Martí, L., 2018. "Lifetime, cost and fuel efficiency in diesel projects for rural electrification in Venezuela," Energy Policy, Elsevier, vol. 121(C), pages 152-161.
    12. Kim, Jung Eun & Tang, Tian, 2020. "Preventing early lock-in with technology-specific policy designs: The Renewable Portfolio Standards and diversity in renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    13. Schaffer, Axel & Düvelmeyer, Claudia, 2016. "Regional drivers of on-farm energy production in Bavaria," Energy Policy, Elsevier, vol. 95(C), pages 361-369.
    14. John Foster & Liam Wagner, 2014. "International experience with transformations in electricity markets: A Short Literature Review," Energy Economics and Management Group Working Papers 2-2014, School of Economics, University of Queensland, Australia.
    15. Brian Rivard and Adonis Yatchew, 2016. "Integration of Renewables into the Ontario Electricity System," The Energy Journal, International Association for Energy Economics, vol. 0(Bollino-M).
    16. Woo, C.K. & Chen, Y. & Olson, A. & Moore, J. & Schlag, N. & Ong, A. & Ho, T., 2017. "Electricity price behavior and carbon trading: New evidence from California," Applied Energy, Elsevier, vol. 204(C), pages 531-543.
    17. Sanya Carley & Richard Andrews, 2012. "Creating a sustainable U.S. electricity sector: the question of scale," Policy Sciences, Springer;Society of Policy Sciences, vol. 45(2), pages 97-121, June.
    18. Herrera, Milton M. & Dyner, Isaac & Cosenz, Federico, 2019. "Assessing the effect of transmission constraints on wind power expansion in northeast Brazil," Utilities Policy, Elsevier, vol. 59(C), pages 1-1.
    19. Woo, C.K. & Li, R. & Shiu, A. & Horowitz, I., 2013. "Residential winter kWh responsiveness under optional time-varying pricing in British Columbia," Applied Energy, Elsevier, vol. 108(C), pages 288-297.
    20. Vale, A.M. & Felix, D.G. & Fortes, M.Z. & Borba, B.S.M.C. & Dias, B.H. & Santelli, B.S., 2017. "Analysis of the economic viability of a photovoltaic generation project applied to the Brazilian housing program “Minha Casa Minha Vida”," Energy Policy, Elsevier, vol. 108(C), pages 292-298.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:juipol:v:49:y:2017:i:c:p:104-115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/utilities-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.