IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1627-d340252.html
   My bibliography  Save this article

Structural Condition for Controllable Power Flow System Containing Controllable and Fluctuating Power Devices

Author

Listed:
  • Saher Javaid

    (Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City 923-1296, Japan)

  • Mineo Kaneko

    (Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City 923-1296, Japan)

  • Yasuo Tan

    (Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City 923-1296, Japan)

Abstract

This paper discusses a structural property for a power system to continue a safe operation under power fluctuation caused by fluctuating power sources and loads. Concerns over global climate change and gas emissions have motivated development and integration of renewable energy sources such as wind and solar to fulfill power demand. The energy generated from these sources exhibits fluctuations and uncertainty which is uncontrollable. In addition, the power fluctuations caused by power loads also have the same consequences on power system. To mitigate the effects of uncontrollable power fluctuations, a power flow control is presented which allocates power levels for controllable power sources and loads and connections between power devices. One basic function for the power flow control is to balance the generated power with the power demand. However, due to the structural limitations, i.e., the power level limitations of controllable sources and loads and the limitation of power flow channels, the power balance may not be achieved. This paper proposes two theorems about the structural conditions for a power system to have a feasible solution which achieves the power balance between power sources and power loads. The discussions in this paper will provide a solid theoretical background for designing a power flow system which proves robustness against fluctuations caused by fluctuating power devices.

Suggested Citation

  • Saher Javaid & Mineo Kaneko & Yasuo Tan, 2020. "Structural Condition for Controllable Power Flow System Containing Controllable and Fluctuating Power Devices," Energies, MDPI, vol. 13(7), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1627-:d:340252
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1627/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1627/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gucciardi Garcez, Catherine, 2017. "Distributed electricity generation in Brazil: An analysis of policy context, design and impact," Utilities Policy, Elsevier, vol. 49(C), pages 104-115.
    2. Denholm, Paul & Margolis, Robert M., 2007. "Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies," Energy Policy, Elsevier, vol. 35(9), pages 4424-4433, September.
    3. Wei, Jingdong & Zhang, Yao & Wang, Jianxue & Cao, Xiaoyu & Khan, Muhammad Armoghan, 2020. "Multi-period planning of multi-energy microgrid with multi-type uncertainties using chance constrained information gap decision method," Applied Energy, Elsevier, vol. 260(C).
    4. Tsuguhiro Takuno & Yutaro Kitamori & Ryo Takahashi & Takashi Hikihara, 2011. "AC Power Routing System in Home Based on Demand and Supply Utilizing Distributed Power Sources," Energies, MDPI, vol. 4(5), pages 1-10, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saher Javaid & Mineo Kaneko & Yasuo Tan, 2021. "Safe Operation Conditions of Electrical Power System Considering Power Balanceability among Power Generators, Loads, and Storage Devices," Energies, MDPI, vol. 14(15), pages 1-27, July.
    2. Konstantina Fotiadou & Terpsichori Helen Velivassaki & Artemis Voulkidis & Dimitrios Skias & Corrado De Santis & Theodore Zahariadis, 2020. "Proactive Critical Energy Infrastructure Protection via Deep Feature Learning," Energies, MDPI, vol. 13(10), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandros Kordonis & Ryo Takahashi & Daichi Nishihara & Takashi Hikihara, 2015. "The Three-Phase Power Router and Its Operation with Matrix Converter toward Smart-Grid Applications," Energies, MDPI, vol. 8(4), pages 1-13, April.
    2. Solomon, A.A. & Faiman, D. & Meron, G., 2012. "Appropriate storage for high-penetration grid-connected photovoltaic plants," Energy Policy, Elsevier, vol. 40(C), pages 335-344.
    3. Byuk-Keun Jo & Gilsoo Jang, 2019. "An Evaluation of the Effect on the Expansion of Photovoltaic Power Generation According to Renewable Energy Certificates on Energy Storage Systems: A Case Study of the Korean Renewable Energy Market," Sustainability, MDPI, vol. 11(16), pages 1-17, August.
    4. Solomon, A.A. & Faiman, D. & Meron, G., 2012. "The role of conventional power plants in a grid fed mainly by PV and storage, and the largest shadow capacity requirement," Energy Policy, Elsevier, vol. 48(C), pages 479-486.
    5. Solomon, A.A. & Kammen, Daniel M. & Callaway, D., 2016. "Investigating the impact of wind–solar complementarities on energy storage requirement and the corresponding supply reliability criteria," Applied Energy, Elsevier, vol. 168(C), pages 130-145.
    6. Kendel, Adnane & Lazaric, Nathalie & Maréchal, Kevin, 2017. "What do people ‘learn by looking’ at direct feedback on their energy consumption? Results of a field study in Southern France," Energy Policy, Elsevier, vol. 108(C), pages 593-605.
    7. Breyer, Christian & Birkner, Christian & Meiss, Jan & Goldschmidt, Jan Christoph & Riede, Moritz, 2013. "A top-down analysis: Determining photovoltaics R&D investments from patent analysis and R&D headcount," Energy Policy, Elsevier, vol. 62(C), pages 1570-1580.
    8. Song, Tangnyu & Huang, Guohe & Zhou, Xiong & Wang, Xiuquan, 2018. "An inexact two-stage fractional energy systems planning model," Energy, Elsevier, vol. 160(C), pages 275-289.
    9. Rigo, Paula D. & Siluk, Julio Cezar M. & Lacerda, Daniel P. & Spellmeier, Júlia P., 2022. "Competitive business model of photovoltaic solar energy installers in Brazil," Renewable Energy, Elsevier, vol. 181(C), pages 39-50.
    10. Fahad Alismail & Mohamed A. Abdulgalil & Muhammad Khalid, 2021. "Optimal Coordinated Planning of Energy Storage and Tie-Lines to Boost Flexibility with High Wind Power Integration," Sustainability, MDPI, vol. 13(5), pages 1-17, February.
    11. He-Yau Kang & Meng-Chan Hung & W. L. Pearn & Amy H. I. Lee & Mei-Sung Kang, 2011. "An Integrated Multi-Criteria Decision Making Model for Evaluating Wind Farm Performance," Energies, MDPI, vol. 4(11), pages 1-25, November.
    12. Hernández-Moro, J. & Martínez-Duart, J.M., 2013. "Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 119-132.
    13. Md. Shouquat Hossain & Naseer Abboodi Madlool & Ali Wadi Al-Fatlawi & Mamdouh El Haj Assad, 2023. "High Penetration of Solar Photovoltaic Structure on the Grid System Disruption: An Overview of Technology Advancement," Sustainability, MDPI, vol. 15(2), pages 1-25, January.
    14. Adarsh Vaderobli & Dev Parikh & Urmila Diwekar, 2020. "Optimization under Uncertainty to Reduce the Cost of Energy for Parabolic Trough Solar Power Plants for Different Weather Conditions," Energies, MDPI, vol. 13(12), pages 1-17, June.
    15. Yubo Guo & Igor Martek & Chuan Chen, 2019. "Policy Evolution in the Chinese PPP Market: The Shifting Strategies of Governmental Support Measures," Sustainability, MDPI, vol. 11(18), pages 1-24, September.
    16. Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.
    17. Khalid, Muhammad & Ahmadi, Abdollah & Savkin, Andrey V. & Agelidis, Vassilios G., 2016. "Minimizing the energy cost for microgrids integrated with renewable energy resources and conventional generation using controlled battery energy storage," Renewable Energy, Elsevier, vol. 97(C), pages 646-655.
    18. Starke, Allan R. & Cardemil, José M. & Escobar, Rodrigo & Colle, Sergio, 2018. "Multi-objective optimization of hybrid CSP+PV system using genetic algorithm," Energy, Elsevier, vol. 147(C), pages 490-503.
    19. Solomon, A.A. & Faiman, D. & Meron, G., 2010. "Grid matching of large-scale wind energy conversion systems, alone and in tandem with large-scale photovoltaic systems: An Israeli case study," Energy Policy, Elsevier, vol. 38(11), pages 7070-7081, November.
    20. Mu, Yunfei & Chen, Wanqing & Yu, Xiaodan & Jia, Hongjie & Hou, Kai & Wang, Congshan & Meng, Xianjun, 2020. "A double-layer planning method for integrated community energy systems with varying energy conversion efficiencies," Applied Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1627-:d:340252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.