IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i4p3034-3046d48355.html
   My bibliography  Save this article

The Three-Phase Power Router and Its Operation with Matrix Converter toward Smart-Grid Applications

Author

Listed:
  • Alexandros Kordonis

    (Department of Electrical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan)

  • Ryo Takahashi

    (Department of Electrical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan)

  • Daichi Nishihara

    (Department of Electrical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan)

  • Takashi Hikihara

    (Department of Electrical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan)

Abstract

A power router has been recently developed for both AC and DC applications that has the potential for smart-grid applications. This study focuses on three-phase power switching through the development of an experimental setup which consists of a three-phase direct AC/AC matrix converter with a power router attached to its output. Various experimental switching scenarios with the loads connected to different input sources were investigated. The crescent introduction of decentralized power generators throughout the power-grid obligates us to take measurements for a better distribution and management of the power. Power routers and matrix converters have great potential to succeed this goal with the help of power electronics devices. In this paper, a novel experimental three-phase power switching was achieved and the advantages of this operation are presented, such as on-demand and constant power supply at the desired loads.

Suggested Citation

  • Alexandros Kordonis & Ryo Takahashi & Daichi Nishihara & Takashi Hikihara, 2015. "The Three-Phase Power Router and Its Operation with Matrix Converter toward Smart-Grid Applications," Energies, MDPI, vol. 8(4), pages 1-13, April.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:4:p:3034-3046:d:48355
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/4/3034/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/4/3034/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ryo Takahashi & Yutaro Kitamori & Takashi Hikihara, 2013. "AC Power Local Network with Multiple Power Routers," Energies, MDPI, vol. 6(12), pages 1-11, December.
    2. Tsuguhiro Takuno & Yutaro Kitamori & Ryo Takahashi & Takashi Hikihara, 2011. "AC Power Routing System in Home Based on Demand and Supply Utilizing Distributed Power Sources," Energies, MDPI, vol. 4(5), pages 1-10, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gang Yao & Tao Zhang & Lidan Zhou & Qiang Li & Nan Jin, 2019. "An Alterable Structure Power Router with General AC and DC Port for Microgrid Applications," Energies, MDPI, vol. 12(9), pages 1-19, May.
    2. Paul Stewart & Chris Bingham, 2016. "Electrical Power and Energy Systems for Transportation Applications," Energies, MDPI, vol. 9(7), pages 1-3, July.
    3. Boe-Shong Hong & Mei-Hung Wu, 2015. "Online Energy Management of City Cars with Multi-Objective Linear Parameter-Varying L 2 -Gain Control," Energies, MDPI, vol. 8(9), pages 1-25, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yingshu Liu & Yue Fang & Jun Li, 2017. "Interconnecting Microgrids via the Energy Router with Smart Energy Management," Energies, MDPI, vol. 10(9), pages 1-19, August.
    2. Gang Yao & Tao Zhang & Lidan Zhou & Qiang Li & Nan Jin, 2019. "An Alterable Structure Power Router with General AC and DC Port for Microgrid Applications," Energies, MDPI, vol. 12(9), pages 1-19, May.
    3. He-Yau Kang & Meng-Chan Hung & W. L. Pearn & Amy H. I. Lee & Mei-Sung Kang, 2011. "An Integrated Multi-Criteria Decision Making Model for Evaluating Wind Farm Performance," Energies, MDPI, vol. 4(11), pages 1-25, November.
    4. Sebastian Baba & Serafin Bachman & Marek Jasinski & Hong Li, 2021. "Evaluation of Modular Power Converter Integrated with 5G Network," Energies, MDPI, vol. 14(21), pages 1-17, November.
    5. Saher Javaid & Mineo Kaneko & Yasuo Tan, 2020. "Structural Condition for Controllable Power Flow System Containing Controllable and Fluctuating Power Devices," Energies, MDPI, vol. 13(7), pages 1-20, April.
    6. Ryo Takahashi & Yutaro Kitamori & Takashi Hikihara, 2013. "AC Power Local Network with Multiple Power Routers," Energies, MDPI, vol. 6(12), pages 1-11, December.
    7. Ryo Takahashi & Tsuguhiro Takuno & Takashi Hikihara, 2012. "Estimation of Power Packet Transfer Properties on Indoor Power Line Channel," Energies, MDPI, vol. 5(7), pages 1-9, June.
    8. Yongming Zhang & Zhe Yan & Li Li & Jiawei Yao, 2018. "A Hybrid Building Power Distribution System in Consideration of Supply and Demand-Side: A Short Overview and a Case Study," Energies, MDPI, vol. 11(11), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:4:p:3034-3046:d:48355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.