IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v81y2023ics0301420723000351.html
   My bibliography  Save this article

Carbon-adjusted efficiency and technology gaps in gold mining

Author

Listed:
  • Ahmad, Shabbir
  • Steen, John
  • Ali, Saleem
  • Valenta, Rick

Abstract

•Significant disparities in efficiency exist between mines and across countries.•There is further variation in the efficiency ranking of mines when CO2 emissions are accounted for in production activities.•The technology gap appears to be higher for mines operating underground than mines using open-pit methods.•Improved technology and effective management of mines operating systems could help mitigate carbon emissions with increased efficiency.

Suggested Citation

  • Ahmad, Shabbir & Steen, John & Ali, Saleem & Valenta, Rick, 2023. "Carbon-adjusted efficiency and technology gaps in gold mining," Resources Policy, Elsevier, vol. 81(C).
  • Handle: RePEc:eee:jrpoli:v:81:y:2023:i:c:s0301420723000351
    DOI: 10.1016/j.resourpol.2023.103327
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420723000351
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2023.103327?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hosseinzadeh, Ahmad & Smyth, Russell & Valadkhani, Abbas & Le, Viet, 2016. "Analyzing the efficiency performance of major Australian mining companies using bootstrap data envelopment analysis," Economic Modelling, Elsevier, vol. 57(C), pages 26-35.
    2. Moriah Bostian & Rolf Färe & Shawna Grosskopf & Tommy Lundgren & William L. Weber, 2018. "Time substitution for environmental performance: The case of Swedish manufacturing," Empirical Economics, Springer, vol. 54(1), pages 129-152, February.
    3. Serra, Teresa & Chambers, Robert G. & Oude Lansink, Alfons, 2014. "Measuring technical and environmental efficiency in a state-contingent technology," European Journal of Operational Research, Elsevier, vol. 236(2), pages 706-717.
    4. Coggins, Jay S. & Swinton, John R., 1996. "The Price of Pollution: A Dual Approach to Valuing SO2Allowances," Journal of Environmental Economics and Management, Elsevier, vol. 30(1), pages 58-72, January.
    5. C. Lovell & J. Lovell, 2013. "Productivity decline in Australian coal mining," Journal of Productivity Analysis, Springer, vol. 40(3), pages 443-455, December.
    6. Christopher J. O’Donnell, 2016. "Nonparametric Estimates of the Components of Productivity and Profitability Change in U.S. Agriculture," International Series in Operations Research & Management Science, in: Joe Zhu (ed.), Data Envelopment Analysis, chapter 0, pages 515-541, Springer.
    7. Cliff Huang & Tai-Hsin Huang & Nan-Hung Liu, 2014. "A new approach to estimating the metafrontier production function based on a stochastic frontier framework," Journal of Productivity Analysis, Springer, vol. 42(3), pages 241-254, December.
    8. Sushama Murty & R. Robert Russell, 2018. "Modeling emission-generating technologies: reconciliation of axiomatic and by-production approaches," Empirical Economics, Springer, vol. 54(1), pages 7-30, February.
    9. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    10. Ma, Jinlong & Evans, David G. & Fuller, Robert J. & Stewart, Donald F., 2002. "Technical efficiency and productivity change of China's iron and steel industry," International Journal of Production Economics, Elsevier, vol. 76(3), pages 293-312, April.
    11. Shao, Liuguo & He, Yingying & Feng, Chao & Zhang, Shijing, 2016. "An empirical analysis of total-factor productivity in 30 sub-sub-sectors of China's nonferrous metal industry," Resources Policy, Elsevier, vol. 50(C), pages 264-269.
    12. Meenakshi Parida & S. Madheswaran, 2021. "Effect of firm ownership on productivity: empirical evidence from the Indian mining industry," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 34(1), pages 87-103, April.
    13. Forsund, Finn R., 2009. "Good Modelling of Bad Outputs: Pollution and Multiple-Output Production," International Review of Environmental and Resource Economics, now publishers, vol. 3(1), pages 1-38, August.
    14. Rodríguez, Xosé A. & Loureiro, Maria L. & Arias, Carlos, 2021. "Measuring productivity in the extractive industries. Evidence from Spanish fluorite mining," Resources Policy, Elsevier, vol. 73(C).
    15. Christopher O’Donnell & D. Rao & George Battese, 2008. "Metafrontier frameworks for the study of firm-level efficiencies and technology ratios," Empirical Economics, Springer, vol. 34(2), pages 231-255, March.
    16. Noor Ramli & Susila Munisamy & Behrouz Arabi, 2013. "Scale directional distance function and its application to the measurement of eco-efficiency in the manufacturing sector," Annals of Operations Research, Springer, vol. 211(1), pages 381-398, December.
    17. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    18. Hampf, Benjamin, 2018. "Measuring Inefficiency in the Presence of Bad Outputs: Does the Disposability Assumption Matter?," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 110815, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    19. E. Grifell-Tatjé & C. Lovell, 2014. "Productivity, price recovery, capacity constraints and their financial consequences," Journal of Productivity Analysis, Springer, vol. 41(1), pages 3-17, February.
    20. Villena, Marcelo & Greve, Fernando, 2018. "On resource depletion and productivity: The case of the Chilean copper industry," Resources Policy, Elsevier, vol. 59(C), pages 553-562.
    21. Kulshreshtha, Mudit & Parikh, Jyoti K., 2002. "Study of efficiency and productivity growth in opencast and underground coal mining in India: a DEA analysis," Energy Economics, Elsevier, vol. 24(5), pages 439-453, September.
    22. Skevas, Theodoros & Lansink, Alfons Oude & Stefanou, Spiro E., 2012. "Measuring technical efficiency in the presence of pesticide spillovers and production uncertainty: The case of Dutch arable farms," European Journal of Operational Research, Elsevier, vol. 223(2), pages 550-559.
    23. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    24. Scott Thacker & Daniel Adshead & Marianne Fay & Stéphane Hallegatte & Mark Harvey & Hendrik Meller & Nicholas O’Regan & Julie Rozenberg & Graham Watkins & Jim W. Hall, 2019. "Infrastructure for sustainable development," Nature Sustainability, Nature, vol. 2(4), pages 324-331, April.
    25. Saleem H. Ali & Damien Giurco & Nicholas Arndt & Edmund Nickless & Graham Brown & Alecos Demetriades & Ray Durrheim & Maria Amélia Enriquez & Judith Kinnaird & Anna Littleboy & Lawrence D. Meinert & R, 2017. "Correction: Corrigendum: Mineral supply for sustainable development requires resource governance," Nature, Nature, vol. 547(7662), pages 246-246, July.
    26. Saleem H. Ali & Damien Giurco & Nicholas Arndt & Edmund Nickless & Graham Brown & Alecos Demetriades & Ray Durrheim & Maria Amélia Enriquez & Judith Kinnaird & Anna Littleboy & Lawrence D. Meinert & R, 2017. "Mineral supply for sustainable development requires resource governance," Nature, Nature, vol. 543(7645), pages 367-372, March.
    27. de Solminihac, Hernán & Gonzales, Luis E. & Cerda, Rodrigo, 2018. "Copper mining productivity: Lessons from Chile," Journal of Policy Modeling, Elsevier, vol. 40(1), pages 182-193.
    28. Robert G. Chambers & Teresa Serra, 2018. "The social dimension of firm performance: a data envelopment approach," Empirical Economics, Springer, vol. 54(1), pages 189-206, February.
    29. Mahadevan, Renuka & Asafu-Adjaye, John, 2005. "The productivity-inflation nexus: the case of the Australian mining sector," Energy Economics, Elsevier, vol. 27(1), pages 209-224, January.
    30. David Humphreys, 2020. "Mining productivity and the fourth industrial revolution," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 33(1), pages 115-125, July.
    31. Syed, Arif & Grafton, R. Quentin & Kalirajan, Kaliappa & Parham, Dean, 2015. "Multifactor productivity growth and the Australian mining sector," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(4), October.
    32. Vernon Topp & Leo Soames & Dean Parham & Harry Bloch, 2008. "Productivity in the Mining Industry: Measurement and Interpretation," Staff Working Papers 0807, Productivity Commission, Government of Australia.
    33. Rolf Färe & Shawna Grosskopf & Carl A. Pasurka & Ron Shadbegian, 2018. "Pollution abatement and employment," Empirical Economics, Springer, vol. 54(1), pages 259-285, February.
    34. Anna, Petrenko, 2016. "Мaркування готової продукції як складова частина інформаційного забезпечення маркетингової діяльності підприємств овочепродуктового підкомплексу," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 2(1), March.
    35. Benjamin Hampf, 2018. "Measuring inefficiency in the presence of bad outputs: Does the disposability assumption matter?," Empirical Economics, Springer, vol. 54(1), pages 101-127, February.
    36. Atakelty Hailu & Terrence S. Veeman, 2001. "Non-parametric Productivity Analysis with Undesirable Outputs: An Application to the Canadian Pulp and Paper Industry," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(3), pages 605-616.
    37. Shabbir Ahmad, 2020. "Estimating input-mix efficiency in a parametric framework: application to state-level agricultural data for the United States," Applied Economics, Taylor & Francis Journals, vol. 52(36), pages 3976-3997, July.
    38. Fare, Rolf, et al, 1993. "Derivation of Shadow Prices for Undesirable Outputs: A Distance Function Approach," The Review of Economics and Statistics, MIT Press, vol. 75(2), pages 374-380, May.
    39. George Battese & D. Rao & Christopher O'Donnell, 2004. "A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies," Journal of Productivity Analysis, Springer, vol. 21(1), pages 91-103, January.
    40. Dyckhoff, H. & Allen, K., 2001. "Measuring ecological efficiency with data envelopment analysis (DEA)," European Journal of Operational Research, Elsevier, vol. 132(2), pages 312-325, July.
    41. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    42. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    43. Chen, Jiabin & Wen, Shaobo & Liu, Yuchen, 2022. "Research on the efficiency of the mining industry in China from the perspective of time and space," Resources Policy, Elsevier, vol. 75(C).
    44. Zhongsheng Hua & Yiwen Bian, 2007. "DEA with Undesirable Factors," Springer Books, in: Joe Zhu & Wade D. Cook (ed.), Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis, chapter 0, pages 103-121, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shabbir Ahmad, 2023. "Innovation and Drivers of Productivity: A Global Analysis of Selected Critical Minerals," Commodities, MDPI, vol. 2(4), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Philippe Boussemart & Hervé Leleu & Zhiyang Shen & Vivian Valdmanis, 2020. "Performance analysis for three pillars of sustainability," Journal of Productivity Analysis, Springer, vol. 53(3), pages 305-320, June.
    2. Amer Ait Sidhoum, 2023. "Assessing the contribution of farmers’ working conditions to productive efficiency in the presence of uncertainty, a nonparametric approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8601-8622, August.
    3. Halkos, George & Petrou, Kleoniki Natalia, 2019. "Treating undesirable outputs in DEA: A critical review," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 97-104.
    4. Hampf, Benjamin & Rødseth, Kenneth Løvold, 2019. "Environmental efficiency measurement with heterogeneous input quality: A nonparametric analysis of U.S. power plants," Energy Economics, Elsevier, vol. 81(C), pages 610-625.
    5. Aparicio, Juan & Kapelko, Magdalena & Zofío, José L., 2020. "The measurement of environmental economic inefficiency with pollution-generating technologies," Resource and Energy Economics, Elsevier, vol. 62(C).
    6. Halkos, George & Petrou, Kleoniki Natalia, 2018. "A critical review of the main methods to treat undesirable outputs in DEA," MPRA Paper 90374, University Library of Munich, Germany.
    7. Benjamin Hampf, 2018. "Measuring inefficiency in the presence of bad outputs: Does the disposability assumption matter?," Empirical Economics, Springer, vol. 54(1), pages 101-127, February.
    8. Fang, Lei, 2020. "Opening the “black box” of environmental production technology in a nonparametric analysis," European Journal of Operational Research, Elsevier, vol. 286(2), pages 769-780.
    9. Dakpo, Hervé K & Jeanneaux, Philippe & Latruffe, Laure, 2014. "Inclusion of undesirable outputs in production technology modeling: The case of greenhouse gas emissions in French meat sheep farming," Working Papers 207806, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    10. Shen, Zhiyang & Bai, Kaixuan & Hong, Tianyang & Balezentis, Tomas, 2021. "Evaluation of carbon shadow price within a non-parametric meta-frontier framework: The case of OECD, ASEAN and BRICS," Applied Energy, Elsevier, vol. 299(C).
    11. Andreas Eder, 2022. "Environmental efficiency measurement when producers control pollutants under heterogeneous conditions: a generalization of the materials balance approach," Journal of Productivity Analysis, Springer, vol. 57(2), pages 157-176, April.
    12. Andreas Eder, 2021. "Environmental efficiency measurement when producers control pollutants under heterogeneous conditions: a generalization of the materials balance approach," Working Papers 752021, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
    13. repec:zbw:inwedp:752021 is not listed on IDEAS
    14. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2017. "Assessing environmental performance in the European Union: Eco-innovation versus catching-up," Energy Policy, Elsevier, vol. 104(C), pages 240-252.
    15. Harald Dyckhoff & Rainer Souren, 2023. "Are important phenomena of joint production still being neglected by economic theory? A review of recent literature," Journal of Business Economics, Springer, vol. 93(6), pages 1015-1053, August.
    16. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2018. "Environmental efficiency and abatement efficiency measurements of China's thermal power industry: A data envelopment analysis based materials balance approach," European Journal of Operational Research, Elsevier, vol. 269(1), pages 35-50.
    17. Juan Aparicio & Magdalena Kapelko, 2019. "Enhancing the Measurement of Composite Indicators of Corporate Social Performance," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(2), pages 807-826, July.
    18. Ma-Lin Song & Ron Fisher & Jian-Lin Wang & Lian-Biao Cui, 2018. "Environmental performance evaluation with big data: theories and methods," Annals of Operations Research, Springer, vol. 270(1), pages 459-472, November.
    19. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    20. Barnabé Walheer, 2020. "Output, input, and undesirable output interconnections in data envelopment analysis: convexity and returns-to-scale," Annals of Operations Research, Springer, vol. 284(1), pages 447-467, January.
    21. Haiyan Deng & Ge Bai & Kristiaan Kerstens & Zhiyang Shen, 2023. "Comparing green productivity under convex and nonconvex technologies: Which is a robust approach consistent with energy structure?," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(8), pages 4377-4394, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:81:y:2023:i:c:s0301420723000351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.