IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v73y2021ics0301420721002014.html
   My bibliography  Save this article

Measuring productivity in the extractive industries. Evidence from Spanish fluorite mining

Author

Listed:
  • Rodríguez, Xosé A.
  • Loureiro, Maria L.
  • Arias, Carlos

Abstract

The extractive industries, as the suppliers of essential raw materials, carry out activities that are fundamental to the development of modern societies. Therefore, how they are managed and administered is of the utmost importance. Optimizing these management procedures is often difficult, however, due to the highly specific nature of the extraction of non-renewable resources.

Suggested Citation

  • Rodríguez, Xosé A. & Loureiro, Maria L. & Arias, Carlos, 2021. "Measuring productivity in the extractive industries. Evidence from Spanish fluorite mining," Resources Policy, Elsevier, vol. 73(C).
  • Handle: RePEc:eee:jrpoli:v:73:y:2021:i:c:s0301420721002014
    DOI: 10.1016/j.resourpol.2021.102187
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420721002014
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2021.102187?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James Hartley, 2000. "Does the Solow Residual Actually Measure Changes in Technology?," Review of Political Economy, Taylor & Francis Journals, vol. 12(1), pages 27-44.
    2. Thijs ten Raa & Pierre Mohnen, 2009. "Neoclassical Growth Accounting and Frontier Analysis: A Synthesis," World Scientific Book Chapters, in: Input–Output Economics: Theory And Applications Featuring Asian Economies, chapter 19, pages 347-370, World Scientific Publishing Co. Pte. Ltd..
    3. Rodriguez, Xose Anton & Arias, Carlos, 2008. "The effects of resource depletion on coal mining productivity," Energy Economics, Elsevier, vol. 30(2), pages 397-408, March.
    4. Lau, Lawrence J., 1976. "A characterization of the normalized restricted profit function," Journal of Economic Theory, Elsevier, vol. 12(1), pages 131-163, February.
    5. Rodríguez, Xosé A. & Arias, Carlos & Rodríguez-González, Ana, 2015. "Physical versus economic depletion of a nonrenewable natural resource," Resources Policy, Elsevier, vol. 46(P2), pages 161-166.
    6. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    7. Villena, Marcelo & Greve, Fernando, 2018. "On resource depletion and productivity: The case of the Chilean copper industry," Resources Policy, Elsevier, vol. 59(C), pages 553-562.
    8. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    9. Morrison, Catherine J, 1992. "Unraveling the Productivity Growth Slowdown in the United States, Canada and Japan: The Effects of Subequilibrium, Scale Economies and Markups," The Review of Economics and Statistics, MIT Press, vol. 74(3), pages 381-393, August.
    10. Morrison, Catherine J & Schwartz, Amy Ellen, 1996. "State Infrastructure and Productive Performance," American Economic Review, American Economic Association, vol. 86(5), pages 1095-1111, December.
    11. Berndt, Ernst R. & Hesse, Dieter M., 1986. "Measuring and assessing capacity utilization in the manufacturing sectors of nine oecd countries," European Economic Review, Elsevier, vol. 30(5), pages 961-989, October.
    12. John E. Tilton, 2013. "Cyclical and Secular Determinants of Productivity in the Copper, Aluminum, Iron Ore, and Coal Industries," Working Papers 2013-11, Colorado School of Mines, Division of Economics and Business.
    13. Jose Emilio Bosca & Javier Escriba & Maria Jose Murgui, 2004. "Total Factor Productivity Growth in Spanish Regions: Effects of Quasi-fixed and External Factors and Varying Capacity Utilization," Regional Studies, Taylor & Francis Journals, vol. 38(6), pages 587-601.
    14. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "Multilateral Comparisons of Output, Input, and Productivity Using Superlative Index Numbers," Economic Journal, Royal Economic Society, vol. 92(365), pages 73-86, March.
    15. Simon Zheng & Harry Bloch, 2014. "Australia’s mining productivity decline: implications for MFP measurement," Journal of Productivity Analysis, Springer, vol. 41(2), pages 201-212, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmad, Shabbir & Steen, John & Ali, Saleem & Valenta, Rick, 2023. "Carbon-adjusted efficiency and technology gaps in gold mining," Resources Policy, Elsevier, vol. 81(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodriguez, Xose Anton & Arias, Carlos, 2008. "The effects of resource depletion on coal mining productivity," Energy Economics, Elsevier, vol. 30(2), pages 397-408, March.
    2. Rodríguez, Xosé A. & Arias, Carlos & Rodríguez-González, Ana, 2015. "Physical versus economic depletion of a nonrenewable natural resource," Resources Policy, Elsevier, vol. 46(P2), pages 161-166.
    3. David H. Good & M. Ishaq Nadiri & Robin C. Sickles, 1996. "Index Number and Factor Demand Approaches to the Estimation of Productivity," NBER Working Papers 5790, National Bureau of Economic Research, Inc.
    4. Prucha, Ingmar R. & Nadiri, M. Ishaq, 1996. "Endogenous capital utilization and productivity measurement in dynamic factor demand models Theory and an application to the U.S. electrical machinery industry," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 343-379.
    5. Nadiri, M. Ishaq & Prucha, Ingmar R., 1990. "Dynamic factor demand models, productivity measurement, and rates of return: Theory and an empirical application to the US Bell System," Structural Change and Economic Dynamics, Elsevier, vol. 1(2), pages 263-289, December.
    6. Ingmar R. Prucha & M. Ishaq Nadiri, 1991. "Endogenous Capital Utilization and Productivity Measurement in Dynamic Factor Demand Models: Theory and an Application to the U.S. Electrical..," NBER Working Papers 3680, National Bureau of Economic Research, Inc.
    7. Villena, Marcelo & Greve, Fernando, 2018. "On resource depletion and productivity: The case of the Chilean copper industry," Resources Policy, Elsevier, vol. 59(C), pages 553-562.
    8. Boisso, Dale & Grosskopf, Shawna & Hayes, Kathy, 2000. "Productivity and efficiency in the US: effects of business cycles and public capital," Regional Science and Urban Economics, Elsevier, vol. 30(6), pages 663-681, December.
    9. Ghali, Sofiane & Mohnen, Pierre, 2010. "Economic restructuring and total factor productivity growth: Tunisia over the period 1983-2001," MERIT Working Papers 2010-033, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    10. Isabel-María García-Sánchez & Luis Rodríguez-Domínguez & Javier Parra-Domínguez, 2013. "Yearly evolution of police efficiency in Spain and explanatory factors," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(1), pages 31-62, January.
    11. Walter Briec & Laurence Lasselle, 2022. "On some relations between a continuous time Luenberger productivity indicator and the Solow model," Bulletin of Economic Research, Wiley Blackwell, vol. 74(2), pages 484-502, April.
    12. Pierce, Justin R., 2011. "Plant-level responses to antidumping duties: Evidence from U.S. manufacturers," Journal of International Economics, Elsevier, vol. 85(2), pages 222-233.
    13. Wang, Lan-Hsun & Liao, Shu-Yi & Huang, Mao-Lung, 2022. "The growth effects of knowledge-based technological change on Taiwan’s industry: A comparison of R&D and education level," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 525-545.
    14. Philippe Aghion & Richard Blundell & Rachel Griffith & Peter Howitt & Susanne Prantl, 2009. "The Effects of Entry on Incumbent Innovation and Productivity," The Review of Economics and Statistics, MIT Press, vol. 91(1), pages 20-32, February.
    15. Thijs Raa, 2008. "Debreu’s coefficient of resource utilization, the Solow residual, and TFP: the connection by Leontief preferences," Journal of Productivity Analysis, Springer, vol. 30(3), pages 191-199, December.
    16. Christopher J. O'Donnell, 2010. "Measuring and decomposing agricultural productivity and profitability change ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(4), pages 527-560, October.
    17. Hailu, Atakelty & Veeman, Terrence S., 2001. "Alternative methods for environmentally adjusted productivity analysis," Agricultural Economics, Blackwell, vol. 25(2-3), pages 211-218, September.
    18. Brandt, Loren & Van Biesebroeck, Johannes & Zhang, Yifan, 2012. "Creative accounting or creative destruction? Firm-level productivity growth in Chinese manufacturing," Journal of Development Economics, Elsevier, vol. 97(2), pages 339-351.
    19. Dariush Akbarian, 2020. "Overall profit Malmquist productivity index under data uncertainty," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-20, December.
    20. Finn R. FF8rsund, 2002. "On the circularity of the Malmquist productivity index," ICER Working Papers 29-2002, ICER - International Centre for Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:73:y:2021:i:c:s0301420721002014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.