IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v77y2022ics0301420722002069.html
   My bibliography  Save this article

Energy efficiency gains from distortion mitigation: A perspective on the metallurgical industry

Author

Listed:
  • Xu, Mengmeng
  • Lin, Boqiang

Abstract

The goal of carbon neutralization in 2060 in China have stressed the importance of increasing energy efficiency in energy-intensive industries, while the factor market distortion has seriously hindered the effective allocation of resources. Focusing on the metallurgical industry, this paper seeks to explore the influence of eliminating factor price distortion on energy efficiency, which could not only provide elaborate recommendations in this crucial sector but also have theoretical implications for building an efficient energy system in the future. To fulfill this goal, we first measure the relative price distortion of production factors in the metallurgical industry, and then explore the impact of dispelling the relative price distortion on total factor energy efficiency on the basis of inter-factor substitution elasticity. The results show that the relative price distortion among production factors exists in China's metallurgical industry, and the prices of labor and energy are relatively higher than that of capital. Eliminating factors price distortion would bring an 18.8% growth in energy efficiency in China's metallurgical industry. Hence, the process of market-oriented reform in the factor market should be accelerated to help construct an efficient energy system in China.

Suggested Citation

  • Xu, Mengmeng & Lin, Boqiang, 2022. "Energy efficiency gains from distortion mitigation: A perspective on the metallurgical industry," Resources Policy, Elsevier, vol. 77(C).
  • Handle: RePEc:eee:jrpoli:v:77:y:2022:i:c:s0301420722002069
    DOI: 10.1016/j.resourpol.2022.102758
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420722002069
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2022.102758?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Kui & Bai, Hongkun & Yin, Shuo & Lin, Boqiang, 2018. "Factor substitution and decomposition of carbon intensity in China's heavy industry," Energy, Elsevier, vol. 145(C), pages 582-591.
    2. Ma, Hengyun & Oxley, Les & Gibson, John & Kim, Bonggeun, 2008. "China's energy economy: Technical change, factor demand and interfactor/interfuel substitution," Energy Economics, Elsevier, vol. 30(5), pages 2167-2183, September.
    3. Sha, Ru & Li, Jinye & Ge, Tao, 2021. "How do price distortions of fossil energy sources affect China's green economic efficiency?," Energy, Elsevier, vol. 232(C).
    4. Yang, Mian & Yang, Fuxia & Sun, Chuanwang, 2018. "Factor market distortion correction, resource reallocation and potential productivity gains: An empirical study on China's heavy industry sector," Energy Economics, Elsevier, vol. 69(C), pages 270-279.
    5. Yang, Mian & Fan, Ying & Yang, Fuxia & Hu, Hui, 2014. "Regional disparities in carbon dioxide reduction from China's uniform carbon tax: A perspective on interfactor/interfuel substitution," Energy, Elsevier, vol. 74(C), pages 131-139.
    6. Ouyang, Xiaoling & Sun, Chuanwang, 2015. "Energy savings potential in China's industrial sector: From the perspectives of factor price distortion and allocative inefficiency," Energy Economics, Elsevier, vol. 48(C), pages 117-126.
    7. Cai, Fang & Wang, Dewen & Du, Yang, 2002. "Regional disparity and economic growth in China: The impact of labor market distortions," China Economic Review, Elsevier, vol. 13(2-3), pages 197-212.
    8. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    9. Bai, Caiquan & Du, Kerui & Yu, Ying & Feng, Chen, 2019. "Understanding the trend of total factor carbon productivity in the world: Insights from convergence analysis," Energy Economics, Elsevier, vol. 81(C), pages 698-708.
    10. Zhou, P. & Ang, B.W. & Zhou, D.Q., 2012. "Measuring economy-wide energy efficiency performance: A parametric frontier approach," Applied Energy, Elsevier, vol. 90(1), pages 196-200.
    11. Jianjun Ouyang & Jie Fu, 2020. "Optimal strategies of improving energy efficiency for an energy-intensive manufacturer considering consumer environmental awareness," International Journal of Production Research, Taylor & Francis Journals, vol. 58(4), pages 1017-1033, February.
    12. Wang, Zanxin & Wei, Wei & Luo, Junwen & Calderon, Margaret, 2019. "The effects of petroleum product price regulation on macroeconomic stability in China," Energy Policy, Elsevier, vol. 132(C), pages 96-105.
    13. Zhou, P. & Ang, B.W. & Han, J.Y., 2010. "Total factor carbon emission performance: A Malmquist index analysis," Energy Economics, Elsevier, vol. 32(1), pages 194-201, January.
    14. Wang, Xiaolei & Bai, Mengqi & Xie, Chunping, 2019. "Investigating CO2 mitigation potentials and the impact of oil price distortion in China's transport sector," Energy Policy, Elsevier, vol. 130(C), pages 320-327.
    15. Li, Jianglong & Lin, Boqiang, 2016. "Inter-factor/inter-fuel substitution, carbon intensity, and energy-related CO2 reduction: Empirical evidence from China," Energy Economics, Elsevier, vol. 56(C), pages 483-494.
    16. Taskin, Fatma & Zaim, Osman, 2000. "Searching for a Kuznets curve in environmental efficiency using kernel estimation," Economics Letters, Elsevier, vol. 68(2), pages 217-223, August.
    17. Ju, Keyi & Su, Bin & Zhou, Dequn & Wu, Junmin, 2017. "Does energy-price regulation benefit China's economy and environment? Evidence from energy-price distortions," Energy Policy, Elsevier, vol. 105(C), pages 108-119.
    18. Loren Brandt & Trevor Tombe & Xiadong Zhu, 2013. "Factor Market Distortions Across Time, Space, and Sectors in China," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 16(1), pages 39-58, January.
    19. Raymond W. Goldsmith, 1951. "A Perpetual Inventory of National Wealth," NBER Chapters, in: Studies in Income and Wealth, Volume 14, pages 5-73, National Bureau of Economic Research, Inc.
    20. Antonietti, Roberto & Fontini, Fulvio, 2019. "Does energy price affect energy efficiency? Cross-country panel evidence," Energy Policy, Elsevier, vol. 129(C), pages 896-906.
    21. Wang, Qiang & Li, Shuyu & Pisarenko, Zhanna, 2020. "Heterogeneous effects of energy efficiency, oil price, environmental pressure, R&D investment, and policy on renewable energy -- evidence from the G20 countries," Energy, Elsevier, vol. 209(C).
    22. Loren Brandt & Trevor Tombe & Xiadong Zhu, 2013. "Factor Market Distortions Across Time, Space, and Sectors in China," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 16(1), pages 39-58, January.
    23. Wen Su & Xiaolei Xie & Jingshan Li & Li Zheng, 2016. "Improving energy efficiency in Bernoulli serial lines: an integrated model," International Journal of Production Research, Taylor & Francis Journals, vol. 54(11), pages 3414-3428, June.
    24. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    25. Lin, Boqiang & Du, Kerui, 2013. "Technology gap and China's regional energy efficiency: A parametric metafrontier approach," Energy Economics, Elsevier, vol. 40(C), pages 529-536.
    26. Mandal, Sabuj Kumar, 2010. "Do undesirable output and environmental regulation matter in energy efficiency analysis? Evidence from Indian Cement Industry," Energy Policy, Elsevier, vol. 38(10), pages 6076-6083, October.
    27. Qiao, Sen & Chen, Hsing Hung & Zhang, Rong Rong, 2021. "Examining the impact of factor price distortions and social welfare on innovation efficiency from the microdata of Chinese renewable energy industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    28. Battle, Ann Marie, 1997. "Welfare effects of liberalization reforms with distortions in financial and labor markets," Journal of Development Economics, Elsevier, vol. 52(2), pages 279-294, April.
    29. Pi, Jiancai & Chen, Xuyang, 2016. "The impacts of capital market distortion on wage inequality, urban unemployment, and welfare in developing countries," International Review of Economics & Finance, Elsevier, vol. 42(C), pages 103-115.
    30. Zhang, Shangfeng & Chen, Congcong & Huang, Duen-Huang & Hu, Lang, 2022. "Measurement of factor price distortion: A new production function method with time-varying elasticity," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    31. Mukherjee, Kankana, 2010. "Measuring energy efficiency in the context of an emerging economy: The case of indian manufacturing," European Journal of Operational Research, Elsevier, vol. 201(3), pages 933-941, March.
    32. Wei, Yi-Ming & Liao, Hua & Fan, Ying, 2007. "An empirical analysis of energy efficiency in China's iron and steel sector," Energy, Elsevier, vol. 32(12), pages 2262-2270.
    33. Shi, Xunpeng & Sun, Sizhong, 2017. "Energy price, regulatory price distortion and economic growth: A case study of China," Energy Economics, Elsevier, vol. 63(C), pages 261-271.
    34. Tan, Ruipeng & Lin, Boqiang & Liu, Xiying, 2019. "Impacts of eliminating the factor distortions on energy efficiency—A focus on China's secondary industry," Energy, Elsevier, vol. 183(C), pages 693-701.
    35. Lin, Boqiang & Xu, Mengmeng, 2019. "Good subsidies or bad subsidies? Evidence from low-carbon transition in China's metallurgical industry," Energy Economics, Elsevier, vol. 83(C), pages 52-60.
    36. Tatiana Damjanovic & Charles Nolan, 2010. "Relative Price Distortions and Inflation Persistence," Economic Journal, Royal Economic Society, vol. 120(547), pages 1080-1099, September.
    37. Singh, Ram D, 1992. "Government-Introduced Price Distortions and Growth: Evidence from Twenty-Nine Developing Countries," Public Choice, Springer, vol. 73(1), pages 83-99, January.
    38. Li, Ke & Lin, Boqiang, 2018. "How to promote energy efficiency through technological progress in China?," Energy, Elsevier, vol. 143(C), pages 812-821.
    39. Rioux, Bertrand & Galkin, Philipp & Murphy, Frederic & Feijoo, Felipe & Pierru, Axel & Malov, Artem & Li, Yan & Wu, Kang, 2019. "The economic impact of price controls on China's natural gas supply chain," Energy Economics, Elsevier, vol. 80(C), pages 394-410.
    40. Wang, Miao & Feng, Chao, 2021. "Towards a decoupling between economic expansion and carbon dioxide emissions in resources sector: A case study of China’s 29 non-ferrous metal industries," Resources Policy, Elsevier, vol. 74(C).
    41. Honma, Satoshi & Hu, Jin-Li, 2008. "Total-factor energy efficiency of regions in Japan," Energy Policy, Elsevier, vol. 36(2), pages 821-833, February.
    42. Honma, Satoshi & Hu, Jin-Li, 2014. "Industry-level total-factor energy efficiency in developed countries: A Japan-centered analysis," Applied Energy, Elsevier, vol. 119(C), pages 67-78.
    43. Yiping Huang & Bijun Wang, 2010. "Cost Distortions and Structural Imbalances in China," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 18(4), pages 1-17, July.
    44. Osman Zaim & Fatma Taskin, 2000. "A Kuznets Curve in Environmental Efficiency: An Application on OECD Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 17(1), pages 21-36, September.
    45. Cui, Herui & Wei, Pengbang, 2017. "Analysis of thermal coal pricing and the coal price distortion in China from the perspective of market forces," Energy Policy, Elsevier, vol. 106(C), pages 148-154.
    46. Du, Kerui & Lin, Boqiang, 2017. "International comparison of total-factor energy productivity growth: A parametric Malmquist index approach," Energy, Elsevier, vol. 118(C), pages 481-488.
    47. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    48. Pérez, Karen & González-Araya, Marcela C. & Iriarte, Alfredo, 2017. "Energy and GHG emission efficiency in the Chilean manufacturing industry: Sectoral and regional analysis by DEA and Malmquist indexes," Energy Economics, Elsevier, vol. 66(C), pages 290-302.
    49. Yiping Huang & Bijun Wang, 2010. "Cost Distortions and Structural Imbalances in China," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 18(s1), pages 1-17.
    50. Beladi, Hamid & Chao, Chi-Chur & Ee, Mong Shan & Yu, Eden S.H., 2019. "Capital market distortion, firm entry and wage inequality," China Economic Review, Elsevier, vol. 56(C), pages 1-1.
    51. Christopoulos, Dimitris K. & Tsionas, Efthymios G., 2002. "Allocative inefficiency and the capital-energy controversy," Energy Economics, Elsevier, vol. 24(4), pages 305-318, July.
    52. Kim, Jihyo & Heo, Eunnyeong, 2013. "Asymmetric substitutability between energy and capital: Evidence from the manufacturing sectors in 10 OECD countries," Energy Economics, Elsevier, vol. 40(C), pages 81-89.
    53. Kong, Qunxi & Chen, Afei & Wong, Zoey & Peng, Dan, 2021. "Factor price distortion, efficiency loss and enterprises' outward foreign direct investment," International Review of Financial Analysis, Elsevier, vol. 78(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pengfei Zhou & Mengyu Han & Yang Shen, 2023. "Impact of Intelligent Manufacturing on Total-Factor Energy Efficiency: Mechanism and Improvement Path," Sustainability, MDPI, vol. 15(5), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ru Sha & Tao Ge & Jinye Li, 2022. "How Energy Price Distortions Affect China’s Economic Growth and Carbon Emissions," Sustainability, MDPI, vol. 14(12), pages 1-27, June.
    2. Yang, Mian & Yang, Fuxia & Sun, Chuanwang, 2018. "Factor market distortion correction, resource reallocation and potential productivity gains: An empirical study on China's heavy industry sector," Energy Economics, Elsevier, vol. 69(C), pages 270-279.
    3. Xu, Mengmeng & Tan, Ruipeng, 2021. "Removing energy allocation distortion to increase economic output and energy efficiency in China," Energy Policy, Elsevier, vol. 150(C).
    4. Ouyang, Xiaoling & Wei, Xiaoyun & Sun, Chuanwang & Du, Gang, 2018. "Impact of factor price distortions on energy efficiency: Evidence from provincial-level panel data in China," Energy Policy, Elsevier, vol. 118(C), pages 573-583.
    5. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    6. Tan, Ruipeng & Lin, Boqiang & Liu, Xiying, 2019. "Impacts of eliminating the factor distortions on energy efficiency—A focus on China's secondary industry," Energy, Elsevier, vol. 183(C), pages 693-701.
    7. Tan, Ruipeng & Xu, Mengmeng & Sun, Chuanwang, 2021. "The impacts of energy reallocation on economic output and CO2 emissions in China," Energy Economics, Elsevier, vol. 94(C).
    8. Sha, Ru & Li, Jinye & Ge, Tao, 2021. "How do price distortions of fossil energy sources affect China's green economic efficiency?," Energy, Elsevier, vol. 232(C).
    9. Ouyang, Xiaoling & Sun, Chuanwang, 2015. "Energy savings potential in China's industrial sector: From the perspectives of factor price distortion and allocative inefficiency," Energy Economics, Elsevier, vol. 48(C), pages 117-126.
    10. Gao, Kang & Yuan, Yijun, 2022. "Does market-oriented reform make the industrial sector “Greener” in China? Fresh evidence from the perspective of capital-labor-energy market distortions," Energy, Elsevier, vol. 254(PA).
    11. Wang, Xiaolei & Bai, Mengqi & Xie, Chunping, 2019. "Investigating CO2 mitigation potentials and the impact of oil price distortion in China's transport sector," Energy Policy, Elsevier, vol. 130(C), pages 320-327.
    12. Qiao, Sen & Zhao, Dong Hao & Guo, Zi Xin & Tao, Zhang, 2022. "Factor price distortions, environmental regulation and innovation efficiency: An empirical study on China's power enterprises," Energy Policy, Elsevier, vol. 164(C).
    13. Hang, Ye & Sun, Jiasen & Wang, Qunwei & Zhao, Zengyao & Wang, Yizhong, 2015. "Measuring energy inefficiency with undesirable outputs and technology heterogeneity in Chinese cities," Economic Modelling, Elsevier, vol. 49(C), pages 46-52.
    14. Wu, F. & Fan, L.W. & Zhou, P. & Zhou, D.Q., 2012. "Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis," Energy Policy, Elsevier, vol. 49(C), pages 164-172.
    15. Lin, Boqiang & Sai, Rockson, 2022. "Has mining agglomeration affected energy productivity in Africa?," Energy, Elsevier, vol. 244(PA).
    16. Chia-Jung Tu & Ming-Chung Chang & Chiang-Ping Chen, 2016. "Progressive Time-Weighted Dynamic Energy Efficiency, Energy Decoupling Rate, and Decarbonization: An Empirical Study on G7 and BRICS," Sustainability, MDPI, vol. 8(9), pages 1-17, September.
    17. Peng Hou & Yilin Li & Yong Tan & Yuanjie Hou, 2020. "Energy Price and Energy Efficiency in China: A Linear and Nonlinear Empirical Investigation," Energies, MDPI, vol. 13(16), pages 1-24, August.
    18. Kuang, Yunming & Lin, Boqiang, 2022. "Natural gas resource utilization, environmental policy and green economic development: Empirical evidence from China," Resources Policy, Elsevier, vol. 79(C).
    19. Du, Minzhe & Wang, Bing & Zhang, Ning, 2018. "National research funding and energy efficiency: Evidence from the National Science Foundation of China," Energy Policy, Elsevier, vol. 120(C), pages 335-346.
    20. Zhang, Bin & Lu, Danting & He, Yan & Chiu, Yung-ho, 2018. "The efficiencies of resource-saving and environment: A case study based on Chinese cities," Energy, Elsevier, vol. 150(C), pages 493-507.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:77:y:2022:i:c:s0301420722002069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.