Advanced Search
MyIDEAS: Login to save this article or follow this journal

On unit roots for spatial autoregressive models


Author Info

  • Paulauskas, Vygantas
Registered author(s):


    In this paper we consider the unit root problem for one rather simple autoregressive model Yt,s=aYt-1,s+bYt,s-1+[var epsilon]t,s on a two-dimensional lattice. We show that the growth of variance of Yt,s is essentially different from corresponding growth in the unit root case for AR(1) or AR(2) time series models. We also show that the dimension of the lattice plays an important role: the growth of variance of autoregressive field on a d-dimensional lattice is different for d=2,3 and d>=4.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 98 (2007)
    Issue (Month): 1 (January)
    Pages: 209-226

    as in new window
    Handle: RePEc:eee:jmvana:v:98:y:2007:i:1:p:209-226

    Contact details of provider:
    Web page:

    Order Information:

    Related research

    Keywords: Autoregressive models Unit root Random fields;


    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Giacomini, Raffaella & Granger, Clive W. J., 2004. "Aggregation of space-time processes," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 7-26.
    2. Julian Besag & Debashis Mondal, 2005. "First-order intrinsic autoregressions and the de Wijs process," Biometrika, Biometrika Trust, vol. 92(4), pages 909-920, December.
    3. Leeb, Hannes & P tscher, Benedikt M., 2001. "The Variance Of An Integrated Process Need Not Diverge To Infinity, And Related Results On Partial Sums Of Stationary Processes," Econometric Theory, Cambridge University Press, vol. 17(04), pages 671-685, August.
    4. Bhattacharyya, B. B. & Ren, J. -J. & Richardson, G. D. & Zhang, J., 2003. "Spatial autoregression model: strong consistency," Statistics & Probability Letters, Elsevier, vol. 65(2), pages 71-77, November.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Baran, Sándor & Pap, Gyula, 2009. "On the least squares estimator in a nearly unstable sequence of stationary spatial AR models," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 686-698, April.
    2. Martellosio, Federico, 2008. "Power Properties of Invariant Tests for Spatial Autocorrelation in Linear Regression," MPRA Paper 7255, University Library of Munich, Germany.
    3. Martellosio, Federico, 2011. "Efficiency of the OLS estimator in the vicinity of a spatial unit root," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1285-1291, August.


    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:1:p:209-226. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.