IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v186y2021ics0047259x21000956.html
   My bibliography  Save this article

Analysis of dependent data aggregated into intervals

Author

Listed:
  • Samadi, S. Yaser
  • Billard, Lynne

Abstract

Many series of data record individual observations as intervals, such as stock market values with daily high-low values, or minimum and maximum monthly temperatures, recorded over time. With the advent of massively large data sets from contemporary computers, it is frequently the case that observations are aggregated into (meaningful) classes of observations, so that resulting data are perforce intervals (or histograms, or other forms of so-called symbolic data). What is known is that taking the average stock market price, or average temperature results in a loss of information. Therefore, this article looks at autocovariance/autocorrelation functions for interval-valued autoregressive series models. Maximum likelihood estimators are derived by exploiting the ideas of composite likelihood and the pairwise likelihood of Lindsay (1988) and Davis and Yau (2011). Different internal distributions of the intervals themselves are also studied. Asymptotic properties of these estimators are obtained. A simulation study shows that the new estimators perform considerably better than those obtained from the set-valued estimators of Wang et al. (2016).

Suggested Citation

  • Samadi, S. Yaser & Billard, Lynne, 2021. "Analysis of dependent data aggregated into intervals," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:jmvana:v:186:y:2021:i:c:s0047259x21000956
    DOI: 10.1016/j.jmva.2021.104817
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X21000956
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2021.104817?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Javier Arroyo & Rosa Espínola & Carlos Maté, 2011. "Different Approaches to Forecast Interval Time Series: A Comparison in Finance," Computational Economics, Springer;Society for Computational Economics, vol. 37(2), pages 169-191, February.
    2. Wang, Xun & Zhang, Zhongzhan & Li, Shoumei, 2016. "Set-valued and interval-valued stationary time series," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 208-223.
    3. Billard L. & Diday E., 2003. "From the Statistics of Data to the Statistics of Knowledge: Symbolic Data Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 470-487, January.
    4. X. Zhang & B. Beranger & S. A. Sisson, 2020. "Constructing likelihood functions for interval‐valued random variables," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(1), pages 1-35, March.
    5. Paulo Teles & Paula Brito, 2015. "Modeling Interval Time Series with Space–Time Processes," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(17), pages 3599-3627, September.
    6. Alexander Shapiro & Jos Berge, 2002. "Statistical inference of minimum rank factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 67(1), pages 79-94, March.
    7. Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt's exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759, July.
    8. Paula Brito & A. Pedro Duarte Silva, 2012. "Modelling interval data with Normal and Skew-Normal distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(1), pages 3-20, March.
    9. Sun, Yuying & Han, Ai & Hong, Yongmiao & Wang, Shouyang, 2018. "Threshold autoregressive models for interval-valued time series data," Journal of Econometrics, Elsevier, vol. 206(2), pages 414-446.
    10. D. G. Malcolm & J. H. Roseboom & C. E. Clark & W. Fazar, 1959. "Application of a Technique for Research and Development Program Evaluation," Operations Research, INFORMS, vol. 7(5), pages 646-669, October.
    11. Gloria Gonzalez-Rivera & Javier Arroyo & Carlos Mate & A. Munoz San Roque, 2011. "Smoothing Methods for Histogram-valued Time Series. An Application to Value-at-Risk," Working Papers 201433, University of California at Riverside, Department of Economics.
    12. Joe, Harry & Lee, Youngjo, 2009. "On weighting of bivariate margins in pairwise likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 670-685, April.
    13. Varin, Cristiano & Vidoni, Paolo, 2006. "Pairwise likelihood inference for ordinal categorical time series," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2365-2373, December.
    14. Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt’s exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759.
    15. Ai Han & Yongmiao Hong & Shouyang Wang & Xin Yun, 2016. "A Vector Autoregressive Moving Average Model for Interval-Valued Time Series Data," Advances in Econometrics, in: Essays in Honor of Aman Ullah, volume 36, pages 417-460, Emerald Group Publishing Limited.
    16. Charles E. Clark, 1962. "Letter to the Editor---The PERT Model for the Distribution of an Activity Time," Operations Research, INFORMS, vol. 10(3), pages 405-406, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Yuying & Zhang, Xinyu & Wan, Alan T.K. & Wang, Shouyang, 2022. "Model averaging for interval-valued data," European Journal of Operational Research, Elsevier, vol. 301(2), pages 772-784.
    2. Babel Raïssa Guemdjo Kamdem & Jules Sadefo-Kamdem & Carlos Ougouyandjou, 2020. "On Random Extended Intervals and their ARMA Processes," Working Papers hal-03169516, HAL.
    3. Babel Raïssa Guemdjo Kamdem & Jules Sadefo-Kamdem & Carlos Ogouyandjou, 2021. "An Abelian Group way to study Random Extended Intervals and their ARMA Processes," Working Papers hal-03174631, HAL.
    4. M. Rosário Oliveira & Margarida Azeitona & António Pacheco & Rui Valadas, 2022. "Association measures for interval variables," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 491-520, September.
    5. Sun, Yuying & Han, Ai & Hong, Yongmiao & Wang, Shouyang, 2018. "Threshold autoregressive models for interval-valued time series data," Journal of Econometrics, Elsevier, vol. 206(2), pages 414-446.
    6. Hao, Peng & Guo, Junpeng, 2017. "Constrained center and range joint model for interval-valued symbolic data regression," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 106-138.
    7. Leandro Maciel & Rosangela Ballini, 2021. "Functional Fuzzy Rule-Based Modeling for Interval-Valued Data: An Empirical Application for Exchange Rates Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 743-771, February.
    8. Xiong, Tao & Li, Chongguang & Bao, Yukun, 2017. "Interval-valued time series forecasting using a novel hybrid HoltI and MSVR model," Economic Modelling, Elsevier, vol. 60(C), pages 11-23.
    9. Sun, Shaolong & Sun, Yuying & Wang, Shouyang & Wei, Yunjie, 2018. "Interval decomposition ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 76(C), pages 274-287.
    10. Paulo M.M. Rodrigues & Nazarii Salish, 2011. "Modeling and Forecasting Interval Time Series with Threshold Models: An Application to S&P500 Index Returns," Working Papers w201128, Banco de Portugal, Economics and Research Department.
    11. Hu, Zhongyi & Bao, Yukun & Chiong, Raymond & Xiong, Tao, 2015. "Mid-term interval load forecasting using multi-output support vector regression with a memetic algorithm for feature selection," Energy, Elsevier, vol. 84(C), pages 419-431.
    12. Chang, Meng-Shiuh & Ju, Peijie & Liu, Yilei & Hsueh, Shao-Chieh, 2022. "Determining hedges and safe havens for stocks using interval analysis," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
    13. Qing Liu & Huina Jin & Xiang Bai & Jinliang Zhang, 2023. "Prediction and Analysis of the Price of Carbon Emission Rights in Shanghai: Under the Background of COVID-19 and the Russia–Ukraine Conflict," Mathematics, MDPI, vol. 11(14), pages 1-16, July.
    14. Paulo Rodrigues & Nazarii Salish, 2015. "Modeling and forecasting interval time series with threshold models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(1), pages 41-57, March.
    15. Piao Wang & Shahid Hussain Gurmani & Zhifu Tao & Jinpei Liu & Huayou Chen, 2024. "Interval time series forecasting: A systematic literature review," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 249-285, March.
    16. Tao Xiong & Yukun Bao & Zhongyi Hu, 2014. "Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting," Papers 1401.1916, arXiv.org.
    17. Henning Fischer & Ángela Blanco‐FERNÁndez & Peter Winker, 2016. "Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 113-146, March.
    18. Liang-Ching Lin & Hsiang-Lin Chien & Sangyeol Lee, 2021. "Symbolic interval-valued data analysis for time series based on auto-interval-regressive models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 295-315, March.
    19. Yang, Dongchuan & Guo, Ju-e & Sun, Shaolong & Han, Jing & Wang, Shouyang, 2022. "An interval decomposition-ensemble approach with data-characteristic-driven reconstruction for short-term load forecasting," Applied Energy, Elsevier, vol. 306(PA).
    20. Fiszeder, Piotr & Perczak, Grzegorz, 2016. "Low and high prices can improve volatility forecasts during periods of turmoil," International Journal of Forecasting, Elsevier, vol. 32(2), pages 398-410.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:186:y:2021:i:c:s0047259x21000956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.