IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v59y2017icp116-123.html
   My bibliography  Save this article

Air transportation demand forecast through Bagging Holt Winters methods

Author

Listed:
  • Dantas, Tiago Mendes
  • Cyrino Oliveira, Fernando Luiz
  • Varela Repolho, Hugo Miguel

Abstract

This paper expands the fields of application of combined Bootstrap aggregating (Bagging) and Holt Winters methods to the air transportation industry, a novelty in literature, in order to obtain more accurate demand forecasts. The methodology involves decomposing the time series into three adding components: trend, seasonal and remainder. New series are generated by resampling the Remainder component and adding back the trend and seasonal ones. The Holt Winters method is used to modelling each time series and the final forecast is obtained by aggregating the forecasts set. The approach is tested using data series from 14 countries and the results are compared with five methodology benchmarks (SARIMA, Holt Winters, ETS, Bagged.BLD.MBB.ETS and Seasonal Naive) using Symmetric Mean Absolute Percentage Error (sMAPE). The empirical results obtained with Bagging Holt Winters methods consistently outperform the benchmarks by providing forecasts that are more accurate.

Suggested Citation

  • Dantas, Tiago Mendes & Cyrino Oliveira, Fernando Luiz & Varela Repolho, Hugo Miguel, 2017. "Air transportation demand forecast through Bagging Holt Winters methods," Journal of Air Transport Management, Elsevier, vol. 59(C), pages 116-123.
  • Handle: RePEc:eee:jaitra:v:59:y:2017:i:c:p:116-123
    DOI: 10.1016/j.jairtraman.2016.12.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699716302265
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2016.12.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scarpel, Rodrigo Arnaldo, 2013. "Forecasting air passengers at São Paulo International Airport using a mixture of local experts model," Journal of Air Transport Management, Elsevier, vol. 26(C), pages 35-39.
    2. Peter R. Winters, 1960. "Forecasting Sales by Exponentially Weighted Moving Averages," Management Science, INFORMS, vol. 6(3), pages 324-342, April.
    3. Richard K. Green, 2007. "Airports and Economic Development," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 35(1), pages 91-112, March.
    4. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
    5. Carson, Richard T. & Cenesizoglu, Tolga & Parker, Roger, 2011. "Forecasting (aggregate) demand for US commercial air travel," International Journal of Forecasting, Elsevier, vol. 27(3), pages 923-941, July.
    6. Hakim, Md Mahbubul & Merkert, Rico, 2016. "The causal relationship between air transport and economic growth: Empirical evidence from South Asia," Journal of Transport Geography, Elsevier, vol. 56(C), pages 120-127.
    7. Xiao, Yi & Liu, John J. & Hu, Yi & Wang, Yingfeng & Lai, Kin Keung & Wang, Shouyang, 2014. "A neuro-fuzzy combination model based on singular spectrum analysis for air transport demand forecasting," Journal of Air Transport Management, Elsevier, vol. 39(C), pages 1-11.
    8. Bergmeir, Christoph & Hyndman, Rob J. & Benítez, José M., 2016. "Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation," International Journal of Forecasting, Elsevier, vol. 32(2), pages 303-312.
    9. Scarpel, Rodrigo Arnaldo, 2014. "A demand trend change early warning forecast model for the city of São Paulo multi-airport system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 65(C), pages 23-32.
    10. Chin, Anthony T.H & Tay, John H, 2001. "Developments in air transport: implications on investment decisions, profitability and survival of Asian airlines," Journal of Air Transport Management, Elsevier, vol. 7(5), pages 319-330.
    11. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
    12. Lai, Sue Ling & Lu, Whei-Li, 2005. "Impact analysis of September 11 on air travel demand in the USA," Journal of Air Transport Management, Elsevier, vol. 11(6), pages 455-458.
    13. Baker, Douglas & Merkert, Rico & Kamruzzaman, Md., 2015. "Regional aviation and economic growth: cointegration and causality analysis in Australia," Journal of Transport Geography, Elsevier, vol. 43(C), pages 140-150.
    14. Singh, D.P. & Dalei, Narendra N. & Raju, T. Bangar, 2016. "Forecasting investment and capacity addition in Indian airport infrastructure: Analysis from post-privatization and post-economic regulation era," Journal of Air Transport Management, Elsevier, vol. 53(C), pages 218-225.
    15. Nenad Njegovan, 2005. "A leading indicator approach to predicting short-term shifts in demand for business travel by air to and from the UK," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(6), pages 421-432.
    16. Grubb, Howard & Mason, Alexina, 2001. "Long lead-time forecasting of UK air passengers by Holt-Winters methods with damped trend," International Journal of Forecasting, Elsevier, vol. 17(1), pages 71-82.
    17. Marazzo, Marcial & Scherre, Rafael & Fernandes, Elton, 2010. "Air transport demand and economic growth in Brazil: A time series analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(2), pages 261-269, March.
    18. Grosche, Tobias & Rothlauf, Franz & Heinzl, Armin, 2007. "Gravity models for airline passenger volume estimation," Journal of Air Transport Management, Elsevier, vol. 13(4), pages 175-183.
    19. Cynthia Barnhart & Peter Belobaba & Amedeo R. Odoni, 2003. "Applications of Operations Research in the Air Transport Industry," Transportation Science, INFORMS, vol. 37(4), pages 368-391, November.
    20. Samagaio, António & Wolters, Mark, 2010. "Comparative analysis of government forecasts for the Lisbon Airport," Journal of Air Transport Management, Elsevier, vol. 16(4), pages 213-217.
    21. Eric Hillebrand & Marcelo Medeiros, 2010. "The Benefits of Bagging for Forecast Models of Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 571-593.
    22. Makridakis, Spyros, 1993. "Accuracy measures: theoretical and practical concerns," International Journal of Forecasting, Elsevier, vol. 9(4), pages 527-529, December.
    23. Alekseev, K.P.G. & Seixas, J.M., 2009. "A multivariate neural forecasting modeling for air transport – Preprocessed by decomposition: A Brazilian application," Journal of Air Transport Management, Elsevier, vol. 15(5), pages 212-216.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Lean & Ma, Yueming & Ma, Mengyao, 2021. "An effective rolling decomposition-ensemble model for gasoline consumption forecasting," Energy, Elsevier, vol. 222(C).
    2. Suh, Daniel Y. & Ryerson, Megan S., 2019. "Forecast to grow: Aviation demand forecasting in an era of demand uncertainty and optimism bias," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 400-416.
    3. Wang, Sen & Gao, Yi, 2021. "A literature review and citation analyses of air travel demand studies published between 2010 and 2020," Journal of Air Transport Management, Elsevier, vol. 97(C).
    4. Tascón, Diana C. & Díaz Olariaga, Oscar, 2021. "Air traffic forecast and its impact on runway capacity. A System Dynamics approach," Journal of Air Transport Management, Elsevier, vol. 90(C).
    5. Meira, Erick & Cyrino Oliveira, Fernando Luiz & Jeon, Jooyoung, 2021. "Treating and Pruning: New approaches to forecasting model selection and combination using prediction intervals," International Journal of Forecasting, Elsevier, vol. 37(2), pages 547-568.
    6. Gunter, Ulrich & Zekan, Bozana, 2021. "Forecasting air passenger numbers with a GVAR model," Annals of Tourism Research, Elsevier, vol. 89(C).
    7. Lifeng Wu & Xiaohui Gao & Yanli Xiao & Sifeng Liu & Yingjie Yang, 2017. "Using grey Holt–Winters model to predict the air quality index for cities in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 1003-1012, September.
    8. Winita Sulandari & Yudho Yudhanto & Sri Subanti & Crisma Devika Setiawan & Riskhia Hapsari & Paulo Canas Rodrigues, 2023. "Comparing the Simple to Complex Automatic Methods with the Ensemble Approach in Forecasting Electrical Time Series Data," Energies, MDPI, vol. 16(22), pages 1-16, November.
    9. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    10. Honglin Xiong & Chongjun Fan & Hongmin Chen & Yun Yang & Collins Opoku ANTWI & Xiaomao Fan, 2022. "A Novel Approach to Air Passenger Index Prediction: Based on Mutual Information Principle and Support Vector Regression Blended Model," SAGE Open, , vol. 12(1), pages 21582440211, January.
    11. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
    12. Jin, Feng & Li, Yongwu & Sun, Shaolong & Li, Hongtao, 2020. "Forecasting air passenger demand with a new hybrid ensemble approach," Journal of Air Transport Management, Elsevier, vol. 83(C).
    13. Yanbing Li & Wei Zhao & Huilong Fan, 2022. "A Spatio-Temporal Graph Neural Network Approach for Traffic Flow Prediction," Mathematics, MDPI, vol. 10(10), pages 1-14, May.
    14. Fotios Petropoulos & Evangelos Spiliotis, 2021. "The Wisdom of the Data: Getting the Most Out of Univariate Time Series Forecasting," Forecasting, MDPI, vol. 3(3), pages 1-20, June.
    15. Nieto, María Rosa & Carmona-Benítez, Rafael Bernardo, 2018. "ARIMA + GARCH + Bootstrap forecasting method applied to the airline industry," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 1-8.
    16. Ahmad M Awajan & Mohd Tahir Ismail & S AL Wadi, 2018. "Improving forecasting accuracy for stock market data using EMD-HW bagging," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-20, July.
    17. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2021. "Point and interval forecasting of electricity supply via pruned ensembles," Energy, Elsevier, vol. 232(C).
    18. Hu, Huanling & Wang, Lin & Peng, Lu & Zeng, Yu-Rong, 2020. "Effective energy consumption forecasting using enhanced bagged echo state network," Energy, Elsevier, vol. 193(C).
    19. Wang, Zhanwei & Song, Woon-Kyung, 2020. "Sustainable airport development with performance evaluation forecasts: A case study of 12 Asian airports," Journal of Air Transport Management, Elsevier, vol. 89(C).
    20. Dantas, Tiago Mendes & Cyrino Oliveira, Fernando Luiz, 2018. "Improving time series forecasting: An approach combining bootstrap aggregation, clusters and exponential smoothing," International Journal of Forecasting, Elsevier, vol. 34(4), pages 748-761.
    21. Xu, Shuojiang & Chan, Hing Kai & Zhang, Tiantian, 2019. "Forecasting the demand of the aviation industry using hybrid time series SARIMA-SVR approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 169-180.
    22. Hu, Yi-Chung, 2023. "Air passenger flow forecasting using nonadditive forecast combination with grey prediction," Journal of Air Transport Management, Elsevier, vol. 112(C).
    23. de Oliveira, Erick Meira & Cyrino Oliveira, Fernando Luiz, 2018. "Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods," Energy, Elsevier, vol. 144(C), pages 776-788.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gunter, Ulrich & Zekan, Bozana, 2021. "Forecasting air passenger numbers with a GVAR model," Annals of Tourism Research, Elsevier, vol. 89(C).
    2. Wang, Sen & Gao, Yi, 2021. "A literature review and citation analyses of air travel demand studies published between 2010 and 2020," Journal of Air Transport Management, Elsevier, vol. 97(C).
    3. Nieto, María Rosa & Carmona-Benítez, Rafael Bernardo, 2018. "ARIMA + GARCH + Bootstrap forecasting method applied to the airline industry," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 1-8.
    4. Jin, Feng & Li, Yongwu & Sun, Shaolong & Li, Hongtao, 2020. "Forecasting air passenger demand with a new hybrid ensemble approach," Journal of Air Transport Management, Elsevier, vol. 83(C).
    5. Hanson, Daniel & Toru Delibasi, Tuba & Gatti, Matteo & Cohen, Shamai, 2022. "How do changes in economic activity affect air passenger traffic? The use of state-dependent income elasticities to improve aviation forecasts," Journal of Air Transport Management, Elsevier, vol. 98(C).
    6. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    7. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2021. "Forecasting Principles from Experience with Forecasting Competitions," Forecasting, MDPI, vol. 3(1), pages 1-28, February.
    8. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    9. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    10. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
    11. Chen, Jieh-Haur & Wei, Hsi-Hsien & Chen, Chih-Lin & Wei, Hsin-Yi & Chen, Yi-Ping & Ye, Zhongnan, 2020. "A practical approach to determining critical macroeconomic factors in air-traffic volume based on K-means clustering and decision-tree classification," Journal of Air Transport Management, Elsevier, vol. 82(C).
    12. Meira, Erick & Cyrino Oliveira, Fernando Luiz & Jeon, Jooyoung, 2021. "Treating and Pruning: New approaches to forecasting model selection and combination using prediction intervals," International Journal of Forecasting, Elsevier, vol. 37(2), pages 547-568.
    13. J D Bermúdez & J V Segura & E Vercher, 2006. "Improving demand forecasting accuracy using nonlinear programming software," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 94-100, January.
    14. Spiliotis, Evangelos & Nikolopoulos, Konstantinos & Assimakopoulos, Vassilios, 2019. "Tales from tails: On the empirical distributions of forecasting errors and their implication to risk," International Journal of Forecasting, Elsevier, vol. 35(2), pages 687-698.
    15. J. D. Bermudez & J. V. Segura & E. Vercher, 2007. "Holt-Winters Forecasting: An Alternative Formulation Applied to UK Air Passenger Data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(9), pages 1075-1090.
    16. Hu, Yi & Xiao, Jin & Deng, Ying & Xiao, Yi & Wang, Shouyang, 2015. "Domestic air passenger traffic and economic growth in China: Evidence from heterogeneous panel models," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 95-100.
    17. Tascón, Diana C. & Díaz Olariaga, Oscar, 2021. "Air traffic forecast and its impact on runway capacity. A System Dynamics approach," Journal of Air Transport Management, Elsevier, vol. 90(C).
    18. de Oliveira, Erick Meira & Cyrino Oliveira, Fernando Luiz, 2018. "Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods," Energy, Elsevier, vol. 144(C), pages 776-788.
    19. Wang, Yanzai & Hao, Chengzhi & Liu, Dawei, 2019. "The spatial and temporal dimensions of the interdependence between the airline industry and the Chinese economy," Journal of Transport Geography, Elsevier, vol. 74(C), pages 201-210.
    20. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:59:y:2017:i:c:p:116-123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.