IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v34y2018i4p822-829.html
   My bibliography  Save this article

Considerations of a retail forecasting practitioner

Author

Listed:
  • Seaman, Brian

Abstract

Forecasts can be used in an extraordinarily diverse range of ways across many domains in which forecasting practitioners work continuously towards improving their forecasts. Each of these domains may require the analysis of different kinds of inputs and special considerations. Even within a given domain, such as retail, there may be many similar use cases of the same kind of forecast, which can lead to practitioners making different decisions. This paper discusses several of the important decision points that practitioners must work through and uses item-level sales forecasting in the retail domain as leveraged by pricing and inventory management as examples of the different paths that may be taken. It considers how each use can lead to a different forecasting objective, and a corresponding focus on different error metrics. In addition, there are several tradeoffs in the forecasting methods that are used to meet each of the objectives best, including the kinds of models used, the running time speed, and forecast accuracy requirements.

Suggested Citation

  • Seaman, Brian, 2018. "Considerations of a retail forecasting practitioner," International Journal of Forecasting, Elsevier, vol. 34(4), pages 822-829.
  • Handle: RePEc:eee:intfor:v:34:y:2018:i:4:p:822-829
    DOI: 10.1016/j.ijforecast.2018.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207018300293
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2018.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dirk Beyer & Feng Cheng & Suresh P. Sethi & Michael Taksar, 2010. "Markovian Demand Inventory Models," International Series in Operations Research and Management Science, Springer, number 978-0-387-71604-6, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seaman, Brian & Bowman, John, 2022. "Applicability of the M5 to Forecasting at Walmart," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1468-1472.
    2. Fotios Petropoulos & Evangelos Spiliotis, 2021. "The Wisdom of the Data: Getting the Most Out of Univariate Time Series Forecasting," Forecasting, MDPI, vol. 3(3), pages 1-20, June.
    3. Spiliotis, Evangelos & Assimakopoulos, Vassilios & Makridakis, Spyros, 2020. "Generalizing the Theta method for automatic forecasting," European Journal of Operational Research, Elsevier, vol. 284(2), pages 550-558.
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    6. Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
    7. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
    8. Sroginis, Anna & Fildes, Robert & Kourentzes, Nikolaos, 2023. "Use of contextual and model-based information in adjusting promotional forecasts," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1177-1191.
    9. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
    10. Chethana Dharmawardane & Ville Sillanpää & Jan Holmström, 2021. "High-frequency forecasting for grocery point-of-sales: intervention in practice and theoretical implications for operational design," Operations Management Research, Springer, vol. 14(1), pages 38-60, June.
    11. Wellens, Arnoud P. & Udenio, Maxi & Boute, Robert N., 2022. "Transfer learning for hierarchical forecasting: Reducing computational efforts of M5 winning methods," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1482-1491.
    12. Evangelos Spiliotis & Spyros Makridakis & Artemios-Anargyros Semenoglou & Vassilios Assimakopoulos, 2022. "Comparison of statistical and machine learning methods for daily SKU demand forecasting," Operational Research, Springer, vol. 22(3), pages 3037-3061, July.
    13. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "M5 accuracy competition: Results, findings, and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1346-1364.
    14. Qi, Lingzhi & Li, Xixi & Wang, Qiang & Jia, Suling, 2023. "fETSmcs: Feature-based ETS model component selection," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1303-1317.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi‐Ming He & James H. Bookbinder & Qishu Cai, 2020. "Optimal policies for stochastic clearing systems with time‐dependent delay penalties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(7), pages 487-502, October.
    2. Yonit Barron & Dror Hermel, 2017. "Shortage decision policies for a fluid production model with MAP arrivals," International Journal of Production Research, Taylor & Francis Journals, vol. 55(14), pages 3946-3969, July.
    3. Presman, E. & Sonin, I., 2023. "An inventory model where commodity prices depend on a continuous time Markov chain," Journal of the New Economic Association, New Economic Association, vol. 59(2), pages 12-34.
    4. Eugene A. Feinberg & Yan Liang, 2022. "On the optimality equation for average cost Markov decision processes and its validity for inventory control," Annals of Operations Research, Springer, vol. 317(2), pages 569-586, October.
    5. Liberopoulos, George & Deligiannis, Michalis, 2022. "Optimal supplier inventory control policies when buyer purchase incidence is driven by past service," European Journal of Operational Research, Elsevier, vol. 300(3), pages 917-936.
    6. Nasr, Walid W. & Maddah, Bacel, 2015. "Continuous (s, S) policy with MMPP correlated demand," European Journal of Operational Research, Elsevier, vol. 246(3), pages 874-885.
    7. Ozyoruk, Emin & Erkip, Nesim Kohen & Ararat, Çağın, 2022. "End-of-life inventory management problem: Results and insights," International Journal of Production Economics, Elsevier, vol. 243(C).
    8. Y. Barron, 2019. "A state-dependent perishability (s, S) inventory model with random batch demands," Annals of Operations Research, Springer, vol. 280(1), pages 65-98, September.
    9. Nasr, Walid W. & Elshar, Ibrahim J., 2018. "Continuous inventory control with stochastic and non-stationary Markovian demand," European Journal of Operational Research, Elsevier, vol. 270(1), pages 198-217.
    10. repec:dgr:rugsom:14001-opera is not listed on IDEAS
    11. Eugene A. Feinberg & Yan Liang, 2022. "Structure of optimal policies to periodic-review inventory models with convex costs and backorders for all values of discount factors," Annals of Operations Research, Springer, vol. 317(1), pages 29-45, October.
    12. Walid W. Nasr, 2022. "Inventory systems with stochastic and batch demand: computational approaches," Annals of Operations Research, Springer, vol. 309(1), pages 163-187, February.
    13. Gan, Xianghua & Sethi, Suresh P. & Xu, Liang, 2019. "Simultaneous Optimization of Contingent and Advance Purchase Orders with Fixed Ordering Costs," Omega, Elsevier, vol. 89(C), pages 227-241.
    14. Woonghee Tim Huh & Ganesh Janakiraman & Mahesh Nagarajan, 2011. "Average Cost Single-Stage Inventory Models: An Analysis Using a Vanishing Discount Approach," Operations Research, INFORMS, vol. 59(1), pages 143-155, February.
    15. Eugene A. Feinberg & Mark E. Lewis, 2018. "On the convergence of optimal actions for Markov decision processes and the optimality of (s, S) inventory policies," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(8), pages 619-637, December.
    16. Gong, Min & Lian, Zhaotong & Xiao, Hua, 2022. "Inventory control policy for perishable products under a buyback contract and Brownian demands," International Journal of Production Economics, Elsevier, vol. 251(C).
    17. Alain Bensoussan & Lama Moussawi-Haidar & Metin Çakanyıldırım, 2010. "Inventory control with an order-time constraint: optimality, uniqueness and significance," Annals of Operations Research, Springer, vol. 181(1), pages 603-640, December.
    18. Germs, Remco & Foreest, Nicky D. van, 2014. "Optimal Control of Production-Inventory Systems with Constant and Compound Poisson Demand," Research Report 14001-OPERA, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    19. Jinhui Han & Suresh P. Sethi & Chi Chung Siu & Sheung Chi Phillip Yam, 2023. "Co‐op advertising in randomly fluctuating markets," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1617-1635, June.
    20. Van Foreest, Nicky D. & Kilic, Onur A., 2023. "An intuitive approach to inventory control with optimal stopping," European Journal of Operational Research, Elsevier, vol. 311(3), pages 921-924.
    21. Harun Avci & Kagan Gokbayrak & Emre Nadar, 2020. "Structural Results for Average‐Cost Inventory Models with Markov‐Modulated Demand and Partial Information," Production and Operations Management, Production and Operations Management Society, vol. 29(1), pages 156-173, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:34:y:2018:i:4:p:822-829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.