IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v280y2019i1d10.1007_s10479-019-03302-2.html
   My bibliography  Save this article

A state-dependent perishability (s, S) inventory model with random batch demands

Author

Listed:
  • Y. Barron

    (Ariel University)

Abstract

We consider continuous-review perishable inventory models with random lead times and state-dependent Poisson demand. The paper revises an earlier work of Barron and Baron (IISE Trans 1–52, 2019). While the former studies unit Poisson demands, this paper deals with demand uncertainty and allows for random batch demands. We conduct a comprehensive analysis of two main models that have different lead times and perish times under backorders or lost sales. Thus, our models can be applied to many industries, in situations where the system is subject to random perishability, random lead time, and demand uncertainty. With a probabilistic approach, we derive a long-run average cost function under the (S, s) replenishment policy. Numerical examples are used to demonstrate the impact of changing batch size and other system parameters on the optimal policy. Our numerical study indicates that, although the Markovian policy can be used as a good approximation of the average total cost, it performs better for a general perish time. We further show that the optimal cost may differ for a different average batch size, while the batch variability seems to provide some robustness.

Suggested Citation

  • Y. Barron, 2019. "A state-dependent perishability (s, S) inventory model with random batch demands," Annals of Operations Research, Springer, vol. 280(1), pages 65-98, September.
  • Handle: RePEc:spr:annopr:v:280:y:2019:i:1:d:10.1007_s10479-019-03302-2
    DOI: 10.1007/s10479-019-03302-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03302-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-019-03302-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. R. Richards, 1975. "Technical Note—Comments on the Distribution of Inventory Position in a Continuous-Review ( s , S ) Inventory System," Operations Research, INFORMS, vol. 23(2), pages 366-371, April.
    2. Dreyfuss, Michael & Giat, Yahel, 2017. "Optimal spares allocation to an exchangeable-item repair system with tolerable wait," European Journal of Operational Research, Elsevier, vol. 261(2), pages 584-594.
    3. Chang, Chun-Tao & Teng, Jinn-Tsair & Goyal, Suresh Kumar, 2010. "Optimal replenishment policies for non-instantaneous deteriorating items with stock-dependent demand," International Journal of Production Economics, Elsevier, vol. 123(1), pages 62-68, January.
    4. SPRINGAEL, Johan & VAN NIEUWENHUYSE, Inneke, 2005. "A lost sales inventory model with a compound poisson demand pattern," Working Papers 2005017, University of Antwerp, Faculty of Business and Economics.
    5. Kouki, Chaaben & Babai, M. Zied & Jemai, Zied & Minner, Stefan, 2016. "A coordinated multi-item inventory system for perishables with random lifetime," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 226-237.
    6. S. Kalpakam & K. P. Sapna, 1996. "A lost sales (S — 1, S) perishable inventory system with renewal demand," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(1), pages 129-142, February.
    7. Qing Li & Peiwen Yu, 2014. "Multimodularity and Its Applications in Three Stochastic Dynamic Inventory Problems," Manufacturing & Service Operations Management, INFORMS, vol. 16(3), pages 455-463, July.
    8. Howard J. Weiss, 1980. "Optimal Ordering Policies for Continuous Review Perishable Inventory Models," Operations Research, INFORMS, vol. 28(2), pages 365-374, April.
    9. Dirk Beyer & Feng Cheng & Suresh P. Sethi & Michael Taksar, 2010. "Markovian Demand Inventory Models," International Series in Operations Research and Management Science, Springer, number 978-0-387-71604-6, September.
    10. Liming Liu & Zhaotong Lian, 1999. "(s, S) Continuous Review Models for Products with Fixed Lifetimes," Operations Research, INFORMS, vol. 47(1), pages 150-158, February.
    11. Opher Baron & Oded Berman & David Perry, 2010. "Continuous review inventory models for perishable items ordered in batches," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 72(2), pages 217-247, October.
    12. Minner, Stefan & Silver, Edward A., 2007. "Replenishment policies for multiple products with compound-Poisson demand that share a common warehouse," International Journal of Production Economics, Elsevier, vol. 108(1-2), pages 388-398, July.
    13. Feng, Lin & Chan, Ya-Lan & Cárdenas-Barrón, Leopoldo Eduardo, 2017. "Pricing and lot-sizing polices for perishable goods when the demand depends on selling price, displayed stocks, and expiration date," International Journal of Production Economics, Elsevier, vol. 185(C), pages 11-20.
    14. Jing-Sheng Song & Paul Zipkin, 1993. "Inventory Control in a Fluctuating Demand Environment," Operations Research, INFORMS, vol. 41(2), pages 351-370, April.
    15. Paul Zipkin, 1986. "Stochastic leadtimes in continuous‐time inventory models," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 33(4), pages 763-774, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yonit Barron, 2023. "Integrating Replenishment Policy and Maintenance Services in a Stochastic Inventory System with Bilateral Movements," Mathematics, MDPI, vol. 11(4), pages 1-35, February.
    2. Gong, Min & Lian, Zhaotong & Xiao, Hua, 2022. "Inventory control policy for perishable products under a buyback contract and Brownian demands," International Journal of Production Economics, Elsevier, vol. 251(C).
    3. Hanukov, Gabi, 2022. "Improving efficiency of service systems by performing a part of the service without the customer's presence," European Journal of Operational Research, Elsevier, vol. 302(2), pages 606-620.
    4. Yonit Barron & Opher Baron, 2020. "The residual time approach for (Q, r) model under perishability, general lead times, and lost sales," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(3), pages 601-648, December.
    5. Yuying Zhang & Dequan Yue & Wuyi Yue, 2022. "A queueing-inventory system with random order size policy and server vacations," Annals of Operations Research, Springer, vol. 310(2), pages 595-620, March.
    6. Walid W. Nasr, 2022. "Inventory systems with stochastic and batch demand: computational approaches," Annals of Operations Research, Springer, vol. 309(1), pages 163-187, February.
    7. Gharbi, Ali & Kenné, Jean-Pierre & Kaddachi, Rawia, 2022. "Dynamic optimal control and simulation for unreliable manufacturing systems under perishable product and shelf life variability," International Journal of Production Economics, Elsevier, vol. 247(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiuli Chao & Xiting Gong & Cong Shi & Huanan Zhang, 2015. "Approximation Algorithms for Perishable Inventory Systems," Operations Research, INFORMS, vol. 63(3), pages 585-601, June.
    2. Onno Boxma & David Perry & Wolfgang Stadje & Shelley Zacks, 2022. "A compound Poisson EOQ model for perishable items with intermittent high and low demand periods," Annals of Operations Research, Springer, vol. 317(2), pages 439-459, October.
    3. Gong, Min & Lian, Zhaotong & Xiao, Hua, 2022. "Inventory control policy for perishable products under a buyback contract and Brownian demands," International Journal of Production Economics, Elsevier, vol. 251(C).
    4. Onno Boxma & David Perry & Shelley Zacks, 2015. "A Fluid EOQ Model of Perishable Items with Intermittent High and Low Demand Rates," Mathematics of Operations Research, INFORMS, vol. 40(2), pages 390-402, February.
    5. Alain Bensoussan & Lama Moussawi-Haidar & Metin Çakanyıldırım, 2010. "Inventory control with an order-time constraint: optimality, uniqueness and significance," Annals of Operations Research, Springer, vol. 181(1), pages 603-640, December.
    6. Kouki, Chaaben & Jouini, Oualid, 2015. "On the effect of lifetime variability on the performance of inventory systems," International Journal of Production Economics, Elsevier, vol. 167(C), pages 23-34.
    7. Qi‐Ming He & James H. Bookbinder & Qishu Cai, 2020. "Optimal policies for stochastic clearing systems with time‐dependent delay penalties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(7), pages 487-502, October.
    8. Kouki, Chaaben & Babai, M. Zied & Jemai, Zied & Minner, Stefan, 2016. "A coordinated multi-item inventory system for perishables with random lifetime," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 226-237.
    9. Yonit Barron & Dror Hermel, 2017. "Shortage decision policies for a fluid production model with MAP arrivals," International Journal of Production Research, Taylor & Francis Journals, vol. 55(14), pages 3946-3969, July.
    10. Lian, Zhaotong & Liu, Xiaoming & Zhao, Ning, 2009. "A perishable inventory model with Markovian renewal demands," International Journal of Production Economics, Elsevier, vol. 121(1), pages 176-182, September.
    11. Nasr, Walid W. & Maddah, Bacel, 2015. "Continuous (s, S) policy with MMPP correlated demand," European Journal of Operational Research, Elsevier, vol. 246(3), pages 874-885.
    12. Hanukov, Gabi & Avinadav, Tal & Chernonog, Tatyana & Yechiali, Uri, 2020. "A service system with perishable products where customers are either fastidious or strategic," International Journal of Production Economics, Elsevier, vol. 228(C).
    13. P., Vijaya Laxmi & M.L., Soujanya, 2015. "Perishable inventory system with service interruptions, retrial demands and negative customers," Applied Mathematics and Computation, Elsevier, vol. 262(C), pages 102-110.
    14. Yonit Barron & Opher Baron, 2020. "The residual time approach for (Q, r) model under perishability, general lead times, and lost sales," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(3), pages 601-648, December.
    15. Michael N. Katehakis & Benjamin Melamed & Jim Junmin Shi, 2022. "Optimal replenishment rate for inventory systems with compound Poisson demands and lost sales: a direct treatment of time-average cost," Annals of Operations Research, Springer, vol. 317(2), pages 665-691, October.
    16. Opher Baron & Oded Berman & David Perry, 2010. "Continuous review inventory models for perishable items ordered in batches," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 72(2), pages 217-247, October.
    17. Nasr, Walid W. & Elshar, Ibrahim J., 2018. "Continuous inventory control with stochastic and non-stationary Markovian demand," European Journal of Operational Research, Elsevier, vol. 270(1), pages 198-217.
    18. Nan Yang & Renyu Zhang, 2022. "Comparative Statics Analysis of An Inventory Management Model with Dynamic Pricing, Market Environment Fluctuation, and Delayed Differentiation," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 341-357, January.
    19. Kouki, Chaaben & Babai, M. Zied & Minner, Stefan, 2018. "On the benefit of dual-sourcing in managing perishable inventory," International Journal of Production Economics, Elsevier, vol. 204(C), pages 1-17.
    20. Avinadav, Tal, 2020. "The effect of decision rights allocation on a supply chain of perishable products under a revenue-sharing contract," International Journal of Production Economics, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:280:y:2019:i:1:d:10.1007_s10479-019-03302-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.