Advanced Search
MyIDEAS: Login

Minimizing the probability of lifetime ruin under borrowing constraints

Contents:

Author Info

  • Bayraktar, Erhan
  • Young, Virginia R.

Abstract

We determine the optimal investment strategy of an individual who targets a given rate of consumption and who seeks to minimize the probability of going bankrupt before she dies, also known as {\it lifetime ruin}. We impose two types of borrowing constraints: First, we do not allow the individual to borrow money to invest in the risky asset nor to sell the risky asset short. However, the latter is not a real restriction because in the unconstrained case, the individual does not sell the risky asset short. Second, we allow the individual to borrow money but only at a rate that is higher than the rate earned on the riskless asset. We consider two forms of the consumption function: (1) The individual consumes at a constant (real) dollar rate, and (2) the individual consumes a constant proportion of her wealth. The first is arguably more realistic, but the second is closely connected with Merton's model of optimal consumption and investment under power utility. We demonstrate that connection in this paper, as well as include a numerical example to illustrate our results.

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6V8N-4MFJT54-2/2/06c824cfaa331774c5b1ef197afc6252
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Insurance: Mathematics and Economics.

Volume (Year): 41 (2007)
Issue (Month): 1 (July)
Pages: 196-221

as in new window
Handle: RePEc:eee:insuma:v:41:y:2007:i:1:p:196-221

Contact details of provider:
Web page: http://www.elsevier.com/locate/inca/505554

Related research

Keywords:

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Milevsky, Moshe Arye & Ho, Kwok & Robinson, Chris, 1997. " Asset Allocation via the Conditional First Exit Time or How to Avoid Outliving Your Money," Review of Quantitative Finance and Accounting, Springer, vol. 9(1), pages 53-70, July.
  2. Browne, S., 1995. "Optimal Investment Policies for a Firm with a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Papers 95-08, Columbia - Graduate School of Business.
  3. Darrell Duffie & Thaleia Zariphopoulou, 1993. "Optimal Investment With Undiversifiable Income Risk," Mathematical Finance, Wiley Blackwell, vol. 3(2), pages 135-148.
  4. J. Dhaene & S. Vanduffel & M. J. Goovaerts & R. Kaas & D. Vyncke, 2005. "Comonotonic Approximations for Optimal Portfolio Selection Problems," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 72(2), pages 253-300.
  5. Moshe A. Milevsky & Kristen S. Moore & Virginia R. Young, 2006. "Asset Allocation And Annuity-Purchase Strategies To Minimize The Probability Of Financial Ruin," Mathematical Finance, Wiley Blackwell, vol. 16(4), pages 647-671.
  6. Hyeng Keun Koo, 1998. "Consumption and Portfolio Selection with Labor Income: A Continuous Time Approach," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 49-65.
  7. Duffie, Darrell & Fleming, Wendell & Soner, H. Mete & Zariphopoulou, Thaleia, 1997. "Hedging in incomplete markets with HARA utility," Journal of Economic Dynamics and Control, Elsevier, vol. 21(4-5), pages 753-782, May.
  8. Sid Browne, 1999. "Beating a moving target: Optimal portfolio strategies for outperforming a stochastic benchmark," Finance and Stochastics, Springer, vol. 3(3), pages 275-294.
  9. Olivieri, Annamaria & Pitacco, Ermanno, 2003. "Solvency requirements for pension annuities," Journal of Pension Economics and Finance, Cambridge University Press, vol. 2(02), pages 127-157, July.
  10. Hipp, Christian & Taksar, Michael, 2000. "Stochastic control for optimal new business," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 185-192, May.
  11. Hipp, Christian & Plum, Michael, 2000. "Optimal investment for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 215-228, October.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Erhan Bayraktar & Yuchong Zhang, 2014. "Minimizing the Probability of Lifetime Ruin Under Ambiguity Aversion," Papers 1402.1809, arXiv.org.
  2. Azcue, Pablo & Muler, Nora, 2009. "Optimal investment strategy to minimize the ruin probability of an insurance company under borrowing constraints," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 26-34, February.
  3. Bayraktar, Erhan & Young, Virginia R., 2009. "Minimizing the lifetime shortfall or shortfall at death," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 447-458, June.
  4. Erhan Bayraktar & Virginia R. Young, 2007. "Mutual Fund Theorems when Minimizing the Probability of Lifetime Ruin," Papers 0705.0053, arXiv.org, revised Mar 2008.
  5. Erhan Bayraktar & Yuchong Zhang, 2014. "Stochastic Perron's Method for the Probability of lifetime ruin problem under transaction costs," Papers 1404.7406, arXiv.org.
  6. Wang, Ting & Young, Virginia R., 2012. "Optimal commutable annuities to minimize the probability of lifetime ruin," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 200-216.
  7. Erhan Bayraktar & Xueying Hu & Virginia R. Young, 2010. "Minimizing the Probability of Lifetime Ruin under Stochastic Volatility," Papers 1003.4216, arXiv.org, revised May 2011.
  8. Claude Bergeron, 2013. "Dividend growth, stock valuation, and long-run risk," Journal of Economics and Finance, Springer, vol. 37(4), pages 547-559, October.
  9. Erhan Bayraktar & Virginia R. Young, 2012. "Maximizing Utility of Consumption Subject to a Constraint on the Probability of Lifetime Ruin," Papers 1206.6268, arXiv.org.
  10. Liang, Zhibin & Bayraktar, Erhan, 2014. "Optimal reinsurance and investment with unobservable claim size and intensity," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 156-166.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:41:y:2007:i:1:p:196-221. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.