IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2304.08819.html
   My bibliography  Save this paper

Optimal moral-hazard-free reinsurance under extended distortion premium principles

Author

Listed:
  • Zhuo Jin
  • Zuo Quan Xu
  • Bin Zou

Abstract

We study an optimal reinsurance problem under a diffusion risk model for an insurer who aims to minimize the probability of lifetime ruin. To rule out moral hazard issues, we only consider moral-hazard-free reinsurance contracts by imposing the incentive compatibility constraint on indemnity functions. The reinsurance premium is calculated under an extended distortion premium principle, in which the distortion function is not necessarily concave. We first show that an optimal reinsurance contract always exists and then derive two sufficient and necessary conditions to characterize it. Due to the presence of the incentive compatibility constraint and the nonconcavity of the distortion, the optimal contract is obtained as a solution to a double obstacle problem. At last, we apply the general result to study three examples and obtain the optimal contract in (semi)closed form.

Suggested Citation

  • Zhuo Jin & Zuo Quan Xu & Bin Zou, 2023. "Optimal moral-hazard-free reinsurance under extended distortion premium principles," Papers 2304.08819, arXiv.org.
  • Handle: RePEc:arx:papers:2304.08819
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2304.08819
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zuo Quan Xu, 2018. "Pareto optimal moral-hazard-free insurance contracts in behavioral finance framework," Papers 1803.02546, arXiv.org, revised Aug 2021.
    2. Chi, Yichun & Zhuang, Sheng Chao, 2020. "Optimal insurance with belief heterogeneity and incentive compatibility," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 104-114.
    3. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    4. Carole Bernard & Xuedong He & Jia-An Yan & Xun Yu Zhou, 2015. "Optimal Insurance Design Under Rank-Dependent Expected Utility," Mathematical Finance, Wiley Blackwell, vol. 25(1), pages 154-186, January.
    5. Lesław Gajek & Dariusz Zagrodny, 2004. "Reinsurance Arrangements Maximizing Insurer's Survival Probability," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 71(3), pages 421-435, September.
    6. Jun Cai & Yichun Chi, 2020. "Optimal reinsurance designs based on risk measures: a review," Statistical Theory and Related Fields, Taylor & Francis Journals, vol. 4(1), pages 1-13, July.
    7. Boonen, Tim J. & Ghossoub, Mario, 2023. "Bowley vs. Pareto optima in reinsurance contracting," European Journal of Operational Research, Elsevier, vol. 307(1), pages 382-391.
    8. Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 71-92, May.
    9. Bayraktar, Erhan & Young, Virginia R., 2007. "Minimizing the probability of lifetime ruin under borrowing constraints," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 196-221, July.
    10. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    11. Jun Cai & Yichun Chi, 2020. "Responses to discussions on ‘Optimal reinsurance designs based on risk measures: a review’," Statistical Theory and Related Fields, Taylor & Francis Journals, vol. 4(1), pages 26-27, July.
    12. Carole Bernard & Weidong Tian, 2009. "Optimal Reinsurance Arrangements Under Tail Risk Measures," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(3), pages 709-725, September.
    13. Gur Huberman & David Mayers & Clifford W. Smith Jr., 1983. "Optimal Insurance Policy Indemnity Schedules," Bell Journal of Economics, The RAND Corporation, vol. 14(2), pages 415-426, Autumn.
    14. S. David Promislow & Virginia Young, 2005. "Minimizing the Probability of Ruin When Claims Follow Brownian Motion with Drift," North American Actuarial Journal, Taylor & Francis Journals, vol. 9(3), pages 110-128.
    15. repec:dau:papers:123456789/5394 is not listed on IDEAS
    16. Chi, Yichun & Zhuang, Sheng Chao, 2022. "Regret-based optimal insurance design," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 22-41.
    17. Xiaoqing Liang & Virginia R. Young, 2020. "Minimizing the Probability of Lifetime Exponential Parisian Ruin," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 1036-1064, March.
    18. Zuo Quan Xu & Xun Yu Zhou & Sheng Chao Zhuang, 2019. "Optimal insurance under rank‐dependent utility and incentive compatibility," Mathematical Finance, Wiley Blackwell, vol. 29(2), pages 659-692, April.
    19. Wang, Shaun S. & Young, Virginia R. & Panjer, Harry H., 1997. "Axiomatic characterization of insurance prices," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 173-183, November.
    20. Guillaume Carlier & Rose-Anne Dana, 2003. "Pareto efficient insurance contracts when the insurer's cost function is discontinuous," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 21(4), pages 871-893, June.
    21. Boonen, Tim J. & Jiang, Wenjun, 2022. "A marginal indemnity function approach to optimal reinsurance under the Vajda condition," European Journal of Operational Research, Elsevier, vol. 303(2), pages 928-944.
    22. Boonen, Tim J. & Ghossoub, Mario, 2019. "On the existence of a representative reinsurer under heterogeneous beliefs," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 209-225.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Wenjun & Hong, Hanping & Ren, Jiandong, 2021. "Pareto-optimal reinsurance policies with maximal synergy," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 185-198.
    2. Liang, Xiaoqing & Jiang, Wenjun & Zhang, Yiying, 2023. "Optimal insurance design under mean-variance preference with narrow framing," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 59-79.
    3. Boonen, Tim J. & Jiang, Wenjun, 2022. "Bilateral risk sharing in a comonotone market with rank-dependent utilities," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 361-378.
    4. Corina Birghila & Tim J. Boonen & Mario Ghossoub, 2023. "Optimal insurance under maxmin expected utility," Finance and Stochastics, Springer, vol. 27(2), pages 467-501, April.
    5. Zuo Quan Xu, 2021. "Moral-hazard-free insurance: mean-variance premium principle and rank-dependent utility theory," Papers 2108.06940, arXiv.org, revised Aug 2022.
    6. Tim J. Boonen & Fangda Liu & Ruodu Wang, 2021. "Competitive equilibria in a comonotone market," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 72(4), pages 1217-1255, November.
    7. Cao, Jingyi & Li, Dongchen & Young, Virginia R. & Zou, Bin, 2023. "Reinsurance games with two reinsurers: Tree versus chain," European Journal of Operational Research, Elsevier, vol. 310(2), pages 928-941.
    8. Yichun Chi & Zuo Quan Xu & Sheng Chao Zhuang, 2022. "Distributionally Robust Goal-Reaching Optimization in the Presence of Background Risk," North American Actuarial Journal, Taylor & Francis Journals, vol. 26(3), pages 351-382, August.
    9. Vincent, Léonard & Albrecher, Hansjörg & Krvavych, Yuriy, 2021. "Structured reinsurance deals with reference to relative market performance," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 125-139.
    10. Corina Birghila & Tim J. Boonen & Mario Ghossoub, 2020. "Optimal Insurance under Maxmin Expected Utility," Papers 2010.07383, arXiv.org.
    11. Wang, Qiuqi & Wang, Ruodu & Zitikis, Ričardas, 2022. "Risk measures induced by efficient insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 56-65.
    12. Leitner, Johannes, 2005. "Dilatation monotonous Choquet integrals," Journal of Mathematical Economics, Elsevier, vol. 41(8), pages 994-1006, December.
    13. Chi, Yichun & Zheng, Jiakun & Zhuang, Shengchao, 2022. "S-shaped narrow framing, skewness and the demand for insurance," Insurance: Mathematics and Economics, Elsevier, vol. 105(C), pages 279-292.
    14. Ghossoub, Mario & Jiang, Wenjun & Ren, Jiandong, 2022. "Pareto-optimal reinsurance under individual risk constraints," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 307-325.
    15. Chi, Yichun & Zhuang, Sheng Chao, 2020. "Optimal insurance with belief heterogeneity and incentive compatibility," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 104-114.
    16. Boonen, Tim J. & Tan, Ken Seng & Zhuang, Sheng Chao, 2016. "The role of a representative reinsurer in optimal reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 196-204.
    17. Tan, Ken Seng & Wei, Pengyu & Wei, Wei & Zhuang, Sheng Chao, 2020. "Optimal dynamic reinsurance policies under a generalized Denneberg’s absolute deviation principle," European Journal of Operational Research, Elsevier, vol. 282(1), pages 345-362.
    18. Carole Bernard & Weidong Tian, 2010. "Insurance Market Effects of Risk Management Metrics," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 35(1), pages 47-80, June.
    19. Belles-Sampera, Jaume & Merigó, José M. & Guillén, Montserrat & Santolino, Miguel, 2013. "The connection between distortion risk measures and ordered weighted averaging operators," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 411-420.
    20. Shunta Akiyama & Mitsuaki Obara & Yasushi Kawase, 2022. "Optimal design of lottery with cumulative prospect theory," Papers 2209.00822, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2304.08819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.