IDEAS home Printed from https://ideas.repec.org/a/bla/jrinsu/v76y2009i3p709-725.html
   My bibliography  Save this article

Optimal Reinsurance Arrangements Under Tail Risk Measures

Author

Listed:
  • Carole Bernard
  • Weidong Tian

Abstract

Regulatory authorities demand insurance companies control their risk exposure by imposing stringent risk management policies. This article investigates the optimal risk management strategy of an insurance company subject to regulatory constraints. We provide optimal reinsurance contracts under different tail risk measures and analyze the impact of regulators' requirements on risk sharing in the reinsurance market. Our results underpin adverse incentives for the insurer when compulsory Value‐at‐Risk risk management requirements are imposed. But economic effects may vary when regulatory constraints involve other risk measures. Finally, we compare the obtained optimal designs to existing reinsurance contracts and alternative risk transfer mechanisms on the capital market.

Suggested Citation

  • Carole Bernard & Weidong Tian, 2009. "Optimal Reinsurance Arrangements Under Tail Risk Measures," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(3), pages 709-725, September.
  • Handle: RePEc:bla:jrinsu:v:76:y:2009:i:3:p:709-725
    DOI: 10.1111/j.1539-6975.2009.01315.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6975.2009.01315.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6975.2009.01315.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Froot, Kenneth A., 2001. "The market for catastrophe risk: a clinical examination," Journal of Financial Economics, Elsevier, vol. 60(2-3), pages 529-571, May.
    2. Gur Huberman & David Mayers & Clifford W. Smith Jr., 1983. "Optimal Insurance Policy Indemnity Schedules," Bell Journal of Economics, The RAND Corporation, vol. 14(2), pages 415-426, Autumn.
    3. Leippold, Markus & Trojani, Fabio & Vanini, Paolo, 2006. "Equilibrium impact of value-at-risk regulation," Journal of Economic Dynamics and Control, Elsevier, vol. 30(8), pages 1277-1313, August.
    4. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    5. J. David Cummins & Olivier Mahul, 2004. "The demand for insurance with an upper limit on coverage," Post-Print hal-01952122, HAL.
    6. J. David Cummins & Olivier Mahul, 2004. "The Demand for Insurance With an Upper Limit on Coverage," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 71(2), pages 253-264, June.
    7. Arthur Hau, 2006. "The Liquidity Demand for Corporate Property Insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(2), pages 261-278, June.
    8. Gollier, Christian & Schlesinger, Harris, 1996. "Arrow's Theorem on the Optimality of Deductibles: A Stochastic Dominance Approach," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(2), pages 359-363, February.
    9. Froot, Kenneth A. & Stein, Jeremy C., 1998. "Risk management, capital budgeting, and capital structure policy for financial institutions: an integrated approach," Journal of Financial Economics, Elsevier, vol. 47(1), pages 55-82, January.
    10. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    11. Cummins, J. David & Doherty, Neil & Lo, Anita, 2002. "Can insurers pay for the "big one"? Measuring the capacity of the insurance market to respond to catastrophic losses," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 557-583, March.
    12. Phelim Boyle & Weidong Tian, 2007. "Portfolio Management With Constraints," Mathematical Finance, Wiley Blackwell, vol. 17(3), pages 319-343, July.
    13. Cummins, J. David & Lalonde, David & Phillips, Richard D., 2004. "The basis risk of catastrophic-loss index securities," Journal of Financial Economics, Elsevier, vol. 71(1), pages 77-111, January.
    14. Furman, Edward & Landsman, Zinoviy, 2006. "Tail Variance Premium with Applications for Elliptical Portfolio of Risks," ASTIN Bulletin, Cambridge University Press, vol. 36(2), pages 433-462, November.
    15. Inui, Koji & Kijima, Masaaki, 2005. "On the significance of expected shortfall as a coherent risk measure," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 853-864, April.
    16. Bruno Jullien & Georges Dionne & Bernard Caillaud, 2000. "Corporate insurance with optimal financial contracting," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 16(1), pages 77-105.
    17. Froot, Kenneth A & Scharfstein, David S & Stein, Jeremy C, 1993. "Risk Management: Coordinating Corporate Investment and Financing Policies," Journal of Finance, American Finance Association, vol. 48(5), pages 1629-1658, December.
    18. Meyer, Jack & Ormiston, Michael B, 1999. "Analyzing the Demand for Deductible Insurance," Journal of Risk and Uncertainty, Springer, vol. 18(3), pages 223-230, October.
    19. Ching-Ping Wang & David Shyu & Hung-Hsi Huang, 2005. "Optimal Insurance Design Under a Value-at-Risk Framework," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 30(2), pages 161-179, December.
    20. Mayers, David & Smith, Clifford W, Jr, 1982. "On the Corporate Demand for Insurance," The Journal of Business, University of Chicago Press, vol. 55(2), pages 281-296, April.
    21. Raviv, Artur, 1979. "The Design of an Optimal Insurance Policy," American Economic Review, American Economic Association, vol. 69(1), pages 84-96, March.
    22. Ching-Ping Wang & David Shyu & Hung-Hsi Huang, 2005. "Optimal Insurance Design Under a Value-at-Risk Framework," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 30(2), pages 161-179, December.
    23. Marek Kaluszka & Andrzej Okolewski, 2008. "An Extension of Arrow's Result on Optimal Reinsurance Contract," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(2), pages 275-288, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carole Bernard & Weidong Tian, 2010. "Insurance Market Effects of Risk Management Metrics," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 35(1), pages 47-80, June.
    2. Dwight Jaffee & Johan Walden, 2014. "Optimal Insurance With Costly Internal Capital," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 17(2), pages 137-161, September.
    3. Dionne, Georges & Harrington, Scott, 2017. "Insurance and Insurance Markets," Working Papers 17-2, HEC Montreal, Canada Research Chair in Risk Management.
    4. Neil A. Doherty & Christian Laux & Alexander Muermann, 2015. "Insuring Nonverifiable Losses," Review of Finance, European Finance Association, vol. 19(1), pages 283-316.
    5. Chi, Yichun, 2018. "Insurance choice under third degree stochastic dominance," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 198-205.
    6. Wang, Qiuqi & Wang, Ruodu & Zitikis, Ričardas, 2022. "Risk measures induced by efficient insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 56-65.
    7. Farkas, Walter & Fringuellotti, Fulvia & Tunaru, Radu, 2020. "A cost-benefit analysis of capital requirements adjusted for model risk," Journal of Corporate Finance, Elsevier, vol. 65(C).
    8. Guerra, Manuel & Centeno, M.L., 2012. "Are quantile risk measures suitable for risk-transfer decisions?," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 446-461.
    9. Alejandro Drexler & Richard Rosen, 2022. "Exposure to catastrophe risk and use of reinsurance: an empirical evaluation for the U.S," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 47(1), pages 103-124, January.
    10. Thomann, Christian & Schulenburg, J.-Matthias, 2006. "Supply and Demand for Terrorism Insurance: Lessons from Germany," Hannover Economic Papers (HEP) dp-340, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    11. Gibson, Rajna & Habib, Michel A. & Ziegler, Alexandre, 2014. "Reinsurance or securitization: The case of natural catastrophe risk," Journal of Mathematical Economics, Elsevier, vol. 53(C), pages 79-100.
    12. Zhou, Chunyang & Wu, Chongfeng, 2008. "Optimal insurance under the insurer's risk constraint," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 992-999, June.
    13. Wang, Ching-Ping & Huang, Hung-Hsi, 2016. "Optimal insurance contract under VaR and CVaR constraints," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 110-127.
    14. Lu, ZhiYi & Meng, LiLi & Wang, Yujin & Shen, Qingjie, 2016. "Optimal reinsurance under VaR and TVaR risk measures in the presence of reinsurer’s risk limit," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 92-100.
    15. Chi, Yichun & Zhuang, Sheng Chao, 2022. "Regret-based optimal insurance design," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 22-41.
    16. Christopher Gaffney & Adi Ben-Israel, 2016. "A simple insurance model: optimal coverage and deductible," Annals of Operations Research, Springer, vol. 237(1), pages 263-279, February.
    17. J. David Cummins & Mary A. Weiss, 2009. "Convergence of Insurance and Financial Markets: Hybrid and Securitized Risk‐Transfer Solutions," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(3), pages 493-545, September.
    18. Daniel Bauer & George Zanjani, 2016. "The Marginal Cost of Risk, Risk Measures, and Capital Allocation," Management Science, INFORMS, vol. 62(5), pages 1431-1457, May.
    19. Christopher Gaffney & Adi Ben-Israel, 2016. "A simple insurance model: optimal coverage and deductible," Annals of Operations Research, Springer, vol. 237(1), pages 263-279, February.
    20. Chi, Yichun & Liu, Fangda, 2017. "Optimal insurance design in the presence of exclusion clauses," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 185-195.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jrinsu:v:76:y:2009:i:3:p:709-725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/ariaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.