IDEAS home Printed from https://ideas.repec.org/a/eee/foreco/v32y2018icp123-134.html
   My bibliography  Save this article

Quantifying environmental and health benefits of using woody biomass for electricity generation in the Southwestern United States

Author

Listed:
  • Huang, Ching-Hsun
  • Bagdon, Benjamin A.

Abstract

The majority of National Forests in the southwestern United States need fuels-reduction treatments that have not kept pace with tree growth and fuels accumulation. The harvested small-sized trees are commonly disposed of through pile burning on the site due to their low market values. We assessed the environmental and health benefits of using small diameter wood from the fuels-reduction treatments as a renewable energy source for electricity production to increase forest health and environmental quality. Our study area was located in northern Arizona within the Four Forest Restoration Initiative project area. We investigated eight air pollutants, projected stand conditions, calculated pollutant emissions from power generators and assessed damage costs from power production. We further used life cycle assessments to investigate emissions from feedstock production, transportation and power generation. Our life cycle assessment results indicate that the annual total damage costs of three treatment-energy scenarios, 1) no thin-coal, 2) thin & pile burning-coal, and 3) thin-bioenergy, are $978,157, $1,732,300 and $43,216, respectively. We determined that in comparison with the no-action (no thin-coal) scenario, the total environmental and health damage cost avoided by utilizing removed woody biomass for the yearly output of a 1 MW (megawatt) power plant was $934,941 annually.

Suggested Citation

  • Huang, Ching-Hsun & Bagdon, Benjamin A., 2018. "Quantifying environmental and health benefits of using woody biomass for electricity generation in the Southwestern United States," Journal of Forest Economics, Elsevier, vol. 32(C), pages 123-134.
  • Handle: RePEc:eee:foreco:v:32:y:2018:i:c:p:123-134
    DOI: 10.1016/j.jfe.2018.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S110468991730137X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jfe.2018.05.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bagdon, Benjamin A. & Huang, Ching-Hsun & Dewhurst, Stephen, 2016. "Managing for ecosystem services in northern Arizona ponderosa pine forests using a novel simulation-to-optimization methodology," Ecological Modelling, Elsevier, vol. 324(C), pages 11-27.
    2. Neal Fann & Amy D. Lamson & Susan C. Anenberg & Karen Wesson & David Risley & Bryan J. Hubbell, 2012. "Estimating the National Public Health Burden Associated with Exposure to Ambient PM2.5 and Ozone," Risk Analysis, John Wiley & Sons, vol. 32(1), pages 81-95, January.
    3. Marten, Alex L. & Newbold, Stephen C., 2012. "Estimating the social cost of non-CO2 GHG emissions: Methane and nitrous oxide," Energy Policy, Elsevier, vol. 51(C), pages 957-972.
    4. Bagdon, Benjamin A. & Huang, Ching-Hsun & Dewhurst, Stephen & Meador, Andrew Sánchez, 2017. "Climate Change Constrains the Efficiency Frontier When Managing Forests to Reduce Fire Severity and Maximize Carbon Storage," Ecological Economics, Elsevier, vol. 140(C), pages 201-214.
    5. Huang, Ching-Hsun & Kronrad, Gary D., 2001. "The cost of sequestering carbon on private forest lands," Forest Policy and Economics, Elsevier, vol. 2(2), pages 133-142, June.
    6. Heller, Martin C & Keoleian, Gregory A & Mann, Margaret K & Volk, Timothy A, 2004. "Life cycle energy and environmental benefits of generating electricity from willow biomass," Renewable Energy, Elsevier, vol. 29(7), pages 1023-1042.
    7. David D. Henry III & Nicholas Z. Muller & Robert O. Mendelsohn, 2011. "The social cost of trading: Measuring the increased damages from sulfur dioxide trading in the United States," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 30(3), pages 598-612, June.
    8. Nicholas Z. Muller & Robert Mendelsohn, 2009. "Efficient Pollution Regulation: Getting the Prices Right," American Economic Review, American Economic Association, vol. 99(5), pages 1714-1739, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masum, Md Farhad Hossain & Dwivedi, Puneet & Anderson, William F., 2020. "Estimating unit production cost, carbon intensity, and carbon abatement cost of electricity generation from bioenergy feedstocks in Georgia, United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    2. Susana Silva & Erika Laranjeira & Isabel Soares, 2021. "Health Benefits from Renewable Electricity Sources: A Review," Energies, MDPI, vol. 14(20), pages 1-17, October.
    3. Masum, Md Farhad Hossain & Dwivedi, Puneet & De La Torre, Rafael, 2021. "Assessing economic and environmental feasibility of wood-based electricity generation in South America: A case study from Colombia," Forest Policy and Economics, Elsevier, vol. 124(C).
    4. Nam, KiJeon & Hwangbo, Soonho & Yoo, ChangKyoo, 2020. "A deep learning-based forecasting model for renewable energy scenarios to guide sustainable energy policy: A case study of Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. LaPlue, Lawrence D., 2022. "Environmental consequences of natural gas wellhead pricing deregulation," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    2. Andrew L. Goodkind & Jay S. Coggins & Julian D. Marshall, 2014. "A Spatial Model of Air Pollution: The Impact of the Concentration-Response Function," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(4), pages 451-479.
    3. Nam, KiJeon & Hwangbo, Soonho & Yoo, ChangKyoo, 2020. "A deep learning-based forecasting model for renewable energy scenarios to guide sustainable energy policy: A case study of Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    4. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2015. "Environmental Benefits from Driving Electric Vehicles?," NBER Working Papers 21291, National Bureau of Economic Research, Inc.
    5. Holland, Stephen P. & Yates, Andrew J., 2015. "Optimal trading ratios for pollution permit markets," Journal of Public Economics, Elsevier, vol. 125(C), pages 16-27.
    6. Alex Hollingworth & Taylor Jaworski & Carl Kitchens & Ivan Rudik, 2022. "Economic Geography and the Efficiency of Environmental Regulation," CESifo Working Paper Series 9644, CESifo.
    7. Jaramillo, Paulina & Muller, Nicholas Z., 2016. "Air pollution emissions and damages from energy production in the U.S.: 2002–2011," Energy Policy, Elsevier, vol. 90(C), pages 202-211.
    8. Joseph G. Schiavo & Robert Mendelsohn, 2019. "The Effect Of Domestic Air Pollution Mitigation And Fracking On Retirements Of Coal Power Plants," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 1-21, May.
    9. Chan, H. Ron & Chupp, B. Andrew & Cropper, Maureen L. & Muller, Nicholas Z., 2018. "The impact of trading on the costs and benefits of the Acid Rain Program," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 180-209.
    10. Chan, Nathan W. & Morrow, John W., 2019. "Unintended consequences of cap-and-trade? Evidence from the Regional Greenhouse Gas Initiative," Energy Economics, Elsevier, vol. 80(C), pages 411-422.
    11. Rhodes, Joshua D. & King, Carey & Gulen, Gürcan & Olmstead, Sheila M. & Dyer, James S. & Hebner, Robert E. & Beach, Fred C. & Edgar, Thomas F. & Webber, Michael E., 2017. "A geographically resolved method to estimate levelized power plant costs with environmental externalities," Energy Policy, Elsevier, vol. 102(C), pages 491-499.
    12. Frans P. Vries & Nick Hanley, 2016. "Incentive-Based Policy Design for Pollution Control and Biodiversity Conservation: A Review," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(4), pages 687-702, April.
    13. Tabata, Tomohiro & Okuda, Takaaki, 2012. "Life cycle assessment of woody biomass energy utilization: Case study in Gifu Prefecture, Japan," Energy, Elsevier, vol. 45(1), pages 944-951.
    14. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H., 2013. "Life cycle assessment of rice straw co-firing with coal power generation in Malaysia," Energy, Elsevier, vol. 57(C), pages 284-294.
    15. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    16. Nicholas Z Muller & Akshaya Jha, 2017. "Does environmental policy affect scaling laws between population and pollution? Evidence from American metropolitan areas," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-15, August.
    17. YingHua He & Thierry Magnac, 2022. "Application Costs and Congestion in Matching Markets," The Economic Journal, Royal Economic Society, vol. 132(648), pages 2918-2950.
    18. Roy, René & Baker, Laurie & Thomassin, Paul J., 2013. "Estimating the Cost of Agricultural Pollution Abatement: Establishing Beneficial Management Practices in the Bras d’Henri Watershed," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150956, Agricultural and Applied Economics Association.
    19. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    20. Thakkar, Jignesh & Kumar, Amit & Ghatora, Sonia & Canter, Christina, 2016. "Energy balance and greenhouse gas emissions from the production and sequestration of charcoal from agricultural residues," Renewable Energy, Elsevier, vol. 94(C), pages 558-567.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:foreco:v:32:y:2018:i:c:p:123-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/701775/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.