IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i12p4754-4760.html
   My bibliography  Save this article

Effects of hydrogen addition and cylinder cutoff on combustion and emissions performance of a spark-ignited gasoline engine under a low operating condition

Author

Listed:
  • Wang, Shuofeng
  • Ji, Changwei
  • Zhang, Bo

Abstract

Because of the low combustion temperature and high throttling loss, SI (spark-ignited) engines always encounter dropped performance at low load conditions. This paper experimentally investigated the co-effect of cylinder cutoff and hydrogen addition on improving the performance of a gasoline-fueled SI engine. The experiment was conducted on a modified four-cylinder SI engine equipped with an electronically controlled hydrogen injection system and a hybrid electronic control unit. The engine was run at 1400 rpm, 34.5 Nm and two cylinder cutoff modes in which one cylinder and two cylinders were closed, respectively. For each cylinder closing strategy, the hydrogen energy fraction in the total fuel (βH2) was increased from 0% to approximately 20%. The test results demonstrated that engine indicated thermal efficiency was effectively improved after cylinder cutoff and hydrogen addition, which rose from 34.6% of the original engine to 40.34% of the engine operating at two-cylinder cutoff mode and βH2=20.41%. Flame development and propagation periods were shortened with the increase of the number of closed cylinders and hydrogen blending ratio. The total cooling loss for all working cylinders, and tailpipe HC (hydrocarbons), CO (carbon monoxide) and CO2 (carbon dioxide) emissions were reduced whereas tailpipe NOx (nitrogen oxide) emissions were increased after hydrogen addition and cylinder closing.

Suggested Citation

  • Wang, Shuofeng & Ji, Changwei & Zhang, Bo, 2010. "Effects of hydrogen addition and cylinder cutoff on combustion and emissions performance of a spark-ignited gasoline engine under a low operating condition," Energy, Elsevier, vol. 35(12), pages 4754-4760.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:12:p:4754-4760
    DOI: 10.1016/j.energy.2010.09.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210004949
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.09.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Berry, Gene D. & Pasternak, Alan D. & Rambach, Glenn D. & Ray Smith, J. & Schock, Robert N., 1996. "Hydrogen as a future transportation fuel," Energy, Elsevier, vol. 21(4), pages 289-303.
    2. Yüksel, F. & Ceviz, M.A., 2003. "Thermal balance of a four stroke SI engine operating on hydrogen as a supplementary fuel," Energy, Elsevier, vol. 28(11), pages 1069-1080.
    3. Hari Ganesh, R. & Subramanian, V. & Balasubramanian, V. & Mallikarjuna, J.M. & Ramesh, A. & Sharma, R.P., 2008. "Hydrogen fueled spark ignition engine with electronically controlled manifold injection: An experimental study," Renewable Energy, Elsevier, vol. 33(6), pages 1324-1333.
    4. Tseng, Phillip & Lee, John & Friley, Paul, 2005. "A hydrogen economy: opportunities and challenges," Energy, Elsevier, vol. 30(14), pages 2703-2720.
    5. Bysveen, Marie, 2007. "Engine characteristics of emissions and performance using mixtures of natural gas and hydrogen," Energy, Elsevier, vol. 32(4), pages 482-489.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Shuofeng & Ji, Changwei & Zhang, Jian & Zhang, Bo, 2011. "Comparison of the performance of a spark-ignited gasoline engine blended with hydrogen and hydrogen–oxygen mixtures," Energy, Elsevier, vol. 36(10), pages 5832-5837.
    2. Chen, Guan-Bang & Li, Yueh-Heng & Cheng, Tsarng-Sheng & Chao, Yei-Chin, 2013. "Chemical effect of hydrogen peroxide addition on characteristics of methane–air combustion," Energy, Elsevier, vol. 55(C), pages 564-570.
    3. Wang, Shuofeng & Ji, Changwei & Zhang, Bo & Cong, Xiaoyu & Liu, Xiaolong, 2016. "Effect of CO2 dilution on combustion and emissions characteristics of the hydrogen-enriched gasoline engine," Energy, Elsevier, vol. 96(C), pages 118-126.
    4. Ji, Changwei & Wang, Shuofeng & Zhang, Bo, 2012. "Performance of a hybrid hydrogen–gasoline engine under various operating conditions," Applied Energy, Elsevier, vol. 97(C), pages 584-589.
    5. Merve Kucuk & Ali Surmen & Ramazan Sener, 2022. "Influence of Hydrogen Enrichment Strategy on Performance Characteristics, Combustion and Emissions of a Rotary Engine for Unmanned Aerial Vehicles (UAVs)," Energies, MDPI, vol. 15(24), pages 1-22, December.
    6. Pandey, Jayashish Kumar & Kumar, G.N., 2022. "Effect of variable compression ratio and equivalence ratio on performance, combustion and emission of hydrogen port injection SI engine," Energy, Elsevier, vol. 239(PE).
    7. Najjar, Yousef S.H., 2011. "Comparison of performance of a Greener direct-injection stratified-charge (DISC) engine with a spark-ignition engine using a simplified model," Energy, Elsevier, vol. 36(7), pages 4136-4143.
    8. Zhang, Zhijin & Zhang, Haiyan & Wang, Tianyou & Jia, Ming, 2014. "Effects of tumble combined with EGR (exhaust gas recirculation) on the combustion and emissions in a spark ignition engine at part loads," Energy, Elsevier, vol. 65(C), pages 18-24.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Shuofeng & Ji, Changwei & Zhang, Jian & Zhang, Bo, 2011. "Comparison of the performance of a spark-ignited gasoline engine blended with hydrogen and hydrogen–oxygen mixtures," Energy, Elsevier, vol. 36(10), pages 5832-5837.
    2. Wu, Horng-Wen & Wu, Zhan-Yi, 2012. "Combustion characteristics and optimal factors determination with Taguchi method for diesel engines port-injecting hydrogen," Energy, Elsevier, vol. 47(1), pages 411-420.
    3. Vudumu, Shravan K. & Koylu, Umit O., 2011. "Computational modeling, validation, and utilization for predicting the performance, combustion and emission characteristics of hydrogen IC engines," Energy, Elsevier, vol. 36(1), pages 647-655.
    4. Bose, Probir Kumar & Deb, Madhujit & Banerjee, Rahul & Majumder, Arindam, 2013. "Multi objective optimization of performance parameters of a single cylinder diesel engine running with hydrogen using a Taguchi-fuzzy based approach," Energy, Elsevier, vol. 63(C), pages 375-386.
    5. Fan, Mei-Qiang & Liu, Shu-sheng & Zhang, Yao & Zhang, Jian & Sun, Li-Xian & Xu, Fen, 2010. "Superior hydrogen storage properties of MgH2–10 wt.% TiC composite," Energy, Elsevier, vol. 35(8), pages 3417-3421.
    6. Das, Amar Kumar & Hansdah, Dulari & Panda, Achyut Kumar, 2021. "Thermal balancing and exergetic performance evaluation of a compression ignition engine fuelled with waste plastic pyrolytic oil and different fuel additives," Energy, Elsevier, vol. 229(C).
    7. Yilmaz, Ceyhun & Kanoglu, Mehmet, 2014. "Thermodynamic evaluation of geothermal energy powered hydrogen production by PEM water electrolysis," Energy, Elsevier, vol. 69(C), pages 592-602.
    8. Diego Bairrão & João Soares & José Almeida & John F. Franco & Zita Vale, 2023. "Green Hydrogen and Energy Transition: Current State and Prospects in Portugal," Energies, MDPI, vol. 16(1), pages 1-23, January.
    9. Alves, Luís & Pereira, Vítor & Lagarteira, Tiago & Mendes, Adélio, 2021. "Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    10. Luigi De Simio & Sabato Iannaccone & Massimo Masi & Paolo Gobbato, 2022. "Experimental Study and Optimisation of a Non-Conventional Ignition System for Reciprocating Engines Operation with Hydrogen–Methane Blends, Syngas, and Biogas," Energies, MDPI, vol. 15(21), pages 1-21, November.
    11. Ji, Changwei & Wang, Shuofeng & Zhang, Bo, 2012. "Performance of a hybrid hydrogen–gasoline engine under various operating conditions," Applied Energy, Elsevier, vol. 97(C), pages 584-589.
    12. Lin, Zhenhong & Fan, Yueyue & Ogden, Joan M & Chen, Chien-Wei, 2008. "Optimized Pathways for Regional H2 Infrastructure Transitions: A Case Study for Southern California," Institute of Transportation Studies, Working Paper Series qt9mk5n8jn, Institute of Transportation Studies, UC Davis.
    13. Fu, Jianqin & Liu, Jingping & Ren, Chengqin & Wang, Linjun & Deng, Banglin & Xu, Zhengxin, 2012. "An open steam power cycle used for IC engine exhaust gas energy recovery," Energy, Elsevier, vol. 44(1), pages 544-554.
    14. de Santoli, Livio & Lo Basso, Gianluigi & Bruschi, Daniele, 2013. "Energy characterization of CHP (combined heat and power) fuelled with hydrogen enriched natural gas blends," Energy, Elsevier, vol. 60(C), pages 13-22.
    15. de Santoli, Livio & Paiolo, Romano & Lo Basso, Gianluigi, 2020. "Energy-environmental experimental campaign on a commercial CHP fueled with H2NG blends and oxygen enriched air hailing from on-site electrolysis," Energy, Elsevier, vol. 195(C).
    16. Anandarajah, Gabrial & Strachan, Neil, 2010. "Interactions and implications of renewable and climate change policy on UK energy scenarios," Energy Policy, Elsevier, vol. 38(11), pages 6724-6735, November.
    17. Farrell, Alexander E. & Keith, David W. & Corbett, James J., 2003. "A strategy for introducing hydrogen into transportation," Energy Policy, Elsevier, vol. 31(13), pages 1357-1367, October.
    18. Takeshita, Takayuki, 2012. "Assessing the co-benefits of CO2 mitigation on air pollutants emissions from road vehicles," Applied Energy, Elsevier, vol. 97(C), pages 225-237.
    19. Djouadi, Amel & Bentahar, Fatiha, 2016. "Combustion study of a spark-ignition engine from pressure cycles," Energy, Elsevier, vol. 101(C), pages 211-217.
    20. Luning Chen & Pragya Verma & Kaipeng Hou & Zhiyuan Qi & Shuchen Zhang & Yi-Sheng Liu & Jinghua Guo & Vitalie Stavila & Mark D. Allendorf & Lansun Zheng & Miquel Salmeron & David Prendergast & Gabor A., 2022. "Reversible dehydrogenation and rehydrogenation of cyclohexane and methylcyclohexane by single-site platinum catalyst," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:12:p:4754-4760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.