IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28607-y.html
   My bibliography  Save this article

Reversible dehydrogenation and rehydrogenation of cyclohexane and methylcyclohexane by single-site platinum catalyst

Author

Listed:
  • Luning Chen

    (The Molecular Foundry, Lawrence Berkeley National Laboratory
    Xiamen University
    Chemical Sciences Division, Lawrence Berkeley National Laboratory)

  • Pragya Verma

    (The Molecular Foundry, Lawrence Berkeley National Laboratory)

  • Kaipeng Hou

    (University of California-Berkeley)

  • Zhiyuan Qi

    (Chemical Sciences Division, Lawrence Berkeley National Laboratory)

  • Shuchen Zhang

    (Chemical Sciences Division, Lawrence Berkeley National Laboratory)

  • Yi-Sheng Liu

    (Advanced Light Source, Lawrence Berkeley National Laboratory)

  • Jinghua Guo

    (Advanced Light Source, Lawrence Berkeley National Laboratory)

  • Vitalie Stavila

    (Sandia National Laboratories)

  • Mark D. Allendorf

    (Sandia National Laboratories)

  • Lansun Zheng

    (Xiamen University)

  • Miquel Salmeron

    (Chemical Sciences Division, Lawrence Berkeley National Laboratory
    University of California-Berkeley)

  • David Prendergast

    (The Molecular Foundry, Lawrence Berkeley National Laboratory)

  • Gabor A. Somorjai

    (Chemical Sciences Division, Lawrence Berkeley National Laboratory
    University of California-Berkeley)

  • Ji Su

    (The Molecular Foundry, Lawrence Berkeley National Laboratory
    Chemical Sciences Division, Lawrence Berkeley National Laboratory)

Abstract

Developing highly efficient and reversible hydrogenation-dehydrogenation catalysts shows great promise for hydrogen storage technologies with highly desirable economic and ecological benefits. Herein, we show that reaction sites consisting of single Pt atoms and neighboring oxygen vacancies (VO) can be prepared on CeO2 (Pt1/CeO2) with unique catalytic properties for the reversible dehydrogenation and rehydrogenation of large molecules such as cyclohexane and methylcyclohexane. Specifically, we find that the dehydrogenation rate of cyclohexane and methylcyclohexane on such sites can reach values above 32,000 molH2 molPt−1 h−1, which is 309 times higher than that of conventional supported Pt nanoparticles. Combining of DRIFTS, AP-XPS, EXAFS, and DFT calculations, we show that the Pt1/CeO2 catalyst exhibits a super-synergistic effect between the catalytic Pt atom and its support, involving redox coupling between Pt and Ce ions, enabling adsorption, activation and reaction of large molecules with sufficient versatility to drive abstraction/addition of hydrogen without requiring multiple reaction sites.

Suggested Citation

  • Luning Chen & Pragya Verma & Kaipeng Hou & Zhiyuan Qi & Shuchen Zhang & Yi-Sheng Liu & Jinghua Guo & Vitalie Stavila & Mark D. Allendorf & Lansun Zheng & Miquel Salmeron & David Prendergast & Gabor A., 2022. "Reversible dehydrogenation and rehydrogenation of cyclohexane and methylcyclohexane by single-site platinum catalyst," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28607-y
    DOI: 10.1038/s41467-022-28607-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28607-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28607-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zailei Zhang & Yihan Zhu & Hiroyuki Asakura & Bin Zhang & Jiaguang Zhang & Maoxiang Zhou & Yu Han & Tsunehiro Tanaka & Aiqin Wang & Tao Zhang & Ning Yan, 2017. "Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    2. Martin Nielsen & Elisabetta Alberico & Wolfgang Baumann & Hans-Joachim Drexler & Henrik Junge & Serafino Gladiali & Matthias Beller, 2013. "Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide," Nature, Nature, vol. 495(7439), pages 85-89, March.
    3. Junjun Shan & Mengwei Li & Lawrence F. Allard & Sungsik Lee & Maria Flytzani-Stephanopoulos, 2017. "Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts," Nature, Nature, vol. 551(7682), pages 605-608, November.
    4. Liang Wang & Erjia Guan & Jian Zhang & Junhao Yang & Yihan Zhu & Yu Han & Ming Yang & Cheng Cen & Gang Fu & Bruce C. Gates & Feng-Shou Xiao, 2018. "Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    5. Tseng, Phillip & Lee, John & Friley, Paul, 2005. "A hydrogen economy: opportunities and challenges," Energy, Elsevier, vol. 30(14), pages 2703-2720.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhaohua Wang & Chunyang Dong & Xuan Tang & Xuetao Qin & Xingwu Liu & Mi Peng & Yao Xu & Chuqiao Song & Jie Zhang & Xuan Liang & Sheng Dai & Ding Ma, 2022. "CO-tolerant RuNi/TiO2 catalyst for the storage and purification of crude hydrogen," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diego Bairrão & João Soares & José Almeida & John F. Franco & Zita Vale, 2023. "Green Hydrogen and Energy Transition: Current State and Prospects in Portugal," Energies, MDPI, vol. 16(1), pages 1-23, January.
    2. Bose, Probir Kumar & Deb, Madhujit & Banerjee, Rahul & Majumder, Arindam, 2013. "Multi objective optimization of performance parameters of a single cylinder diesel engine running with hydrogen using a Taguchi-fuzzy based approach," Energy, Elsevier, vol. 63(C), pages 375-386.
    3. Yang, Le & Lin, Hongju & Fang, Zhihao & Yang, Yanhui & Liu, Xiaohao & Ouyang, Gangfeng, 2023. "Recent advances on methane partial oxidation toward oxygenates under mild conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    4. Lin, Zhenhong & Fan, Yueyue & Ogden, Joan M & Chen, Chien-Wei, 2008. "Optimized Pathways for Regional H2 Infrastructure Transitions: A Case Study for Southern California," Institute of Transportation Studies, Working Paper Series qt9mk5n8jn, Institute of Transportation Studies, UC Davis.
    5. Song, Hongqing & Lao, Junming & Zhang, Liyuan & Xie, Chiyu & Wang, Yuhe, 2023. "Underground hydrogen storage in reservoirs: pore-scale mechanisms and optimization of storage capacity and efficiency," Applied Energy, Elsevier, vol. 337(C).
    6. Lorenzi, Guido & Lanzini, Andrea & Santarelli, Massimo & Martin, Andrew, 2017. "Exergo-economic analysis of a direct biogas upgrading process to synthetic natural gas via integrated high-temperature electrolysis and methanation," Energy, Elsevier, vol. 141(C), pages 1524-1537.
    7. Sanjay Kumar Kar & Akhoury Sudhir Kumar Sinha & Sidhartha Harichandan & Rohit Bansal & Marriyappan Sivagnanam Balathanigaimani, 2023. "Hydrogen economy in India: A status review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(1), January.
    8. Zhongzhe Wei & Zijiang Zhao & Chenglong Qiu & Songtao Huang & Zihao Yao & Mingxuan Wang & Yi Chen & Yue Lin & Xing Zhong & Xiaonian Li & Jianguo Wang, 2023. "Tripodal Pd metallenes mediated by Nb2C MXenes for boosting alkynes semihydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Udomsirichakorn, Jakkapong & Salam, P. Abdul, 2014. "Review of hydrogen-enriched gas production from steam gasification of biomass: The prospect of CaO-based chemical looping gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 565-579.
    10. Chun, Dongphil & Hong, Sungjun & Chung, Yanghon & Woo, Chungwon & Seo, Hangyeol, 2016. "Influencing factors on hydrogen energy R&D projects: An ex-post performance evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1252-1258.
    11. Wei Liu & Haisong Feng & Yusen Yang & Yiming Niu & Lei Wang & Pan Yin & Song Hong & Bingsen Zhang & Xin Zhang & Min Wei, 2022. "Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Ruban, Priya & Sellappa, Kanmani, 2014. "Development and performance of bench-scale reactor for the photocatalytic generation of hydrogen," Energy, Elsevier, vol. 73(C), pages 926-932.
    13. Pérez-Fortes, Mar & Schöneberger, Jan C. & Boulamanti, Aikaterini & Tzimas, Evangelos, 2016. "Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment," Applied Energy, Elsevier, vol. 161(C), pages 718-732.
    14. Sgarbossa, Fabio & Arena, Simone & Tang, Ou & Peron, Mirco, 2023. "Renewable hydrogen supply chains: A planning matrix and an agenda for future research," International Journal of Production Economics, Elsevier, vol. 255(C).
    15. Baldinelli, Arianna & Barelli, Linda & Bidini, Gianni, 2015. "Performance characterization and modelling of syngas-fed SOFCs (solid oxide fuel cells) varying fuel composition," Energy, Elsevier, vol. 90(P2), pages 2070-2084.
    16. Lee, Duk Hee & Park, Sang Yong & Hong, Jong Chul & Choi, Sang Jin & Kim, Jong Wook, 2013. "Analysis of the energy and environmental effects of green car deployment by an integrating energy system model with a forecasting model," Applied Energy, Elsevier, vol. 103(C), pages 306-316.
    17. Hoang, Anh Tuan & Pandey, Ashok & Martinez De Osés, Francisco Javier & Chen, Wei-Hsin & Said, Zafar & Ng, Kim Hoong & Ağbulut, Ümit & Tarełko, Wiesław & Ölçer, Aykut I. & Nguyen, Xuan Phuong, 2023. "Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    18. Sgarbossa, Fabio & Arena, Simone & Tang, Ou & Peron, Mirco, 2022. "Reprint of: Renewable hydrogen supply chains: A planning matrix and an agenda for future research," International Journal of Production Economics, Elsevier, vol. 250(C).
    19. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2016. "Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 850-866.
    20. Gao, Yuan & Zhang, Shuai & Sun, Hao & Wang, Ruixue & Tu, Xin & Shao, Tao, 2018. "Highly efficient conversion of methane using microsecond and nanosecond pulsed spark discharges," Applied Energy, Elsevier, vol. 226(C), pages 534-545.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28607-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.