IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v28y2003i8p877-893.html
   My bibliography  Save this article

A strategy for prioritising interactive measures for enhancing energy efficiency of air-conditioned buildings

Author

Listed:
  • Lee, W.L.
  • Yik, F.W.H.
  • Jones, P.

Abstract

Within a given budget, selection of the optimal set of measures for enhancing the energy efficiency of a building is often based on the relative order of the feasible measures, prioritised according to either the life cycle cost saving or the economic benefit–cost ratio of the measures. A sensitivity analysis shows that, compared to the life cycle cost analysis, the benefit–cost ratio analysis is less susceptible to the influence of uncertainties in the estimates of the present value of the life cycle energy saving and cost. Where interactive measures are involved, the effects of some are dependent on the co-existence of other measures. The prioritisation determined according to the benefit–cost ratios of individual measures, each taken in the absence of all the others, can lead to the choice of a range of measures that is below optimal. Selection of the optimal set of energy efficiency enhancement measures requires a multistep approach, which is exemplified by the case study described in the paper.

Suggested Citation

  • Lee, W.L. & Yik, F.W.H. & Jones, P., 2003. "A strategy for prioritising interactive measures for enhancing energy efficiency of air-conditioned buildings," Energy, Elsevier, vol. 28(8), pages 877-893.
  • Handle: RePEc:eee:energy:v:28:y:2003:i:8:p:877-893
    DOI: 10.1016/S0360-5442(03)00005-7
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544203000057
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(03)00005-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. ARTHUR Rosenfeld & CELINA Atkinson & JONATHAN Koomey & ALAN Meier & ROBERT J. Mowris & LYNN PRICE, 1993. "Conserved Energy Supply Curves For U.S. Buildings," Contemporary Economic Policy, Western Economic Association International, vol. 11(1), pages 45-68, January.
    2. Yu, Philip C. H. & Chow, W. K., 2000. "Sizing of air-conditioning plant for commercial buildings in Hong Kong," Applied Energy, Elsevier, vol. 66(2), pages 91-103, June.
    3. Oliver, M. & Jackson, T., 2001. "Energy and economic evaluation of building-integrated photovoltaics," Energy, Elsevier, vol. 26(4), pages 431-439.
    4. Morthorst, Poul Erik, 1994. "Constructing CO2 reduction cost curves The case of Denmark," Energy Policy, Elsevier, vol. 22(11), pages 964-970, November.
    5. Lee, W. L. & Yik, F. W. H. & Jones, P. & Burnett, J., 2001. "Energy saving by realistic design data for commercial buildings in Hong Kong," Applied Energy, Elsevier, vol. 70(1), pages 59-75, September.
    6. DeCanio, Stephen J, 1998. "The efficiency paradox: bureaucratic and organizational barriers to profitable energy-saving investments," Energy Policy, Elsevier, vol. 26(5), pages 441-454, April.
    7. Nesbakken, Runa, 1999. "Price sensitivity of residential energy consumption in Norway," Energy Economics, Elsevier, vol. 21(6), pages 493-515, December.
    8. Koopmans, Carl C. & te Velde, Dirk Willem, 2001. "Bridging the energy efficiency gap: using bottom-up information in a top-down energy demand model," Energy Economics, Elsevier, vol. 23(1), pages 57-75, January.
    9. Jackson, Tim, 1991. "Least-cost greenhouse planning supply curves for global warming abatement," Energy Policy, Elsevier, vol. 19(1), pages 35-46.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xiaotong & Lu, Meijun & Mao, Wei & Ouyang, Jinlong & Zhou, Bo & Yang, Yunkai, 2015. "Improving benefit-cost analysis to overcome financing difficulties in promoting energy-efficient renovation of existing residential buildings in China," Applied Energy, Elsevier, vol. 141(C), pages 119-130.
    2. Yu, F.W. & Chan, K.T., 2005. "Experimental determination of the energy efficiency of an air-cooled chiller under part load conditions," Energy, Elsevier, vol. 30(10), pages 1747-1758.
    3. Peri, Giorgia & Traverso, Marzia & Finkbeiner, Matthias & Rizzo, Gianfranco, 2012. "The cost of green roofs disposal in a life cycle perspective: Covering the gap," Energy, Elsevier, vol. 48(1), pages 406-414.
    4. Tang, Rui & Wang, Shengwei & Shan, Kui & Cheung, Howard, 2018. "Optimal control strategy of central air-conditioning systems of buildings at morning start period for enhanced energy efficiency and peak demand limiting," Energy, Elsevier, vol. 151(C), pages 771-781.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Halkos, George, 2014. "The Economics of Climate Change Policy: Critical review and future policy directions," MPRA Paper 56841, University Library of Munich, Germany.
    2. Levihn, Fabian, 2016. "On the problem of optimizing through least cost per unit, when costs are negative: Implications for cost curves and the definition of economic efficiency," Energy, Elsevier, vol. 114(C), pages 1155-1163.
    3. Fleiter, Tobias & Worrell, Ernst & Eichhammer, Wolfgang, 2011. "Barriers to energy efficiency in industrial bottom-up energy demand models--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3099-3111, August.
    4. Cheng, Qi & Wang, Shengwei & Yan, Chengchu & Xiao, Fu, 2017. "Probabilistic approach for uncertainty-based optimal design of chiller plants in buildings," Applied Energy, Elsevier, vol. 185(P2), pages 1613-1624.
    5. Willem J.H. van Groenendaal, 2011. "Energy Model and Policy Advice: The Effect of Model Choice," Chapters, in: Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), Improving Energy Efficiency through Technology, chapter 11, Edward Elgar Publishing.
    6. Taylor, Simon, 2012. "The ranking of negative-cost emissions reduction measures," Energy Policy, Elsevier, vol. 48(C), pages 430-438.
    7. Martin, Ralf & Muûls, Mirabelle & de Preux, Laure B. & Wagner, Ulrich J., 2012. "Anatomy of a paradox: Management practices, organizational structure and energy efficiency," Journal of Environmental Economics and Management, Elsevier, vol. 63(2), pages 208-223.
    8. Vitaliy Roud & Thomas Wolfgang Thurner, 2018. "The Influence of State‐Ownership on Eco‐Innovations in Russian Manufacturing Firms," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1213-1227, October.
    9. Dorothée Charlier & Sondès Kahouli, 2018. "Fuel poverty and residential energy demand: how fuel-poor households react to energy price fluctuations," Post-Print halshs-01957771, HAL.
    10. Romero-Jordán, Desiderio & del Río, Pablo & Peñasco, Cristina, 2016. "An analysis of the welfare and distributive implications of factors influencing household electricity consumption," Energy Policy, Elsevier, vol. 88(C), pages 361-370.
    11. Sandrine Mathy & Patrick Criqui & Katharina Knoop & Manfred Fischedick & Sascha Samadi, 2016. "Uncertainty management and the dynamic adjustment of deep decarbonization pathways," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 47-62, June.
    12. DeCanio, Stephen J. & Watkins, William E., 1998. "Information processing and organizational structure," Journal of Economic Behavior & Organization, Elsevier, vol. 36(3), pages 275-294, August.
    13. Dorothee Charlier and Sondes Kahouli, 2019. "From Residential Energy Demand to Fuel Poverty: Income-induced Non-linearities in the Reactions of Households to Energy Price Fluctuations," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    14. Olsthoorn, Mark & Schleich, Joachim & Hirzel, Simon, 2017. "Adoption of Energy Efficiency Measures for Non-residential Buildings: Technological and Organizational Heterogeneity in the Trade, Commerce and Services Sector," Ecological Economics, Elsevier, vol. 136(C), pages 240-254.
    15. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    16. Stavins, Robert & Jaffe, Adam & Newell, Richard, 2000. "Technological Change and the Environment," Working Paper Series rwp00-002, Harvard University, John F. Kennedy School of Government.
    17. Volland, Benjamin, 2017. "The role of risk and trust attitudes in explaining residential energy demand: Evidence from the United Kingdom," Ecological Economics, Elsevier, vol. 132(C), pages 14-30.
    18. Yu, Philip C.H. & Chow, W.K., 2001. "Energy use in commercial buildings in Hong Kong," Applied Energy, Elsevier, vol. 69(4), pages 243-255, August.
    19. Fernando, Yudi & Hor, Wei Lin, 2017. "Impacts of energy management practices on energy efficiency and carbon emissions reduction: A survey of malaysian manufacturing firms," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 62-73.
    20. Jun Li & Michel Colombier, 2011. "Economic instruments for mitigating carbon emissions: scaling up carbon finance in China’s buildings sector," Climatic Change, Springer, vol. 107(3), pages 567-591, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:28:y:2003:i:8:p:877-893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.