IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v272y2023ics0360544223005030.html
   My bibliography  Save this article

An optimal battery allocation model for battery swapping station of electric vehicles

Author

Listed:
  • Yang, Jie
  • Liu, Wei
  • Ma, Kai
  • Yue, Zhiyuan
  • Zhu, Anhu
  • Guo, Shiliang

Abstract

This paper studies battery of battery charging station (BSS) orderly swapping, efficient battery management and reasonable battery allocation. Firstly, based on a user-centered perspective, this paper first establishes the user adaptive response model according to the battery state of health (SOH) and state of charge (SOC) after battery allocation to realize the user autonomous decision-making. Secondly, the battery exchange priority function is established for the ordered exchange of BSS and EV batteries during the battery exchange process. Thirdly, the batteries in the BSS are divided into three battery libraries to be managed according to the difference of battery SOH so that the batteries are accurately and efficiently allocated to the power system and EV services. Finally, BSS transfers excess electricity to the power system through battery to grid (B2G) technology as regulating energy, increasing the flexibility of the power system. Through the analysis of the optimization model, the results show that compared with the random distribution of batteries, the model not only increases the benefits of BSS, but also ensures the distribution of each battery is rapid, accurate and reasonable, realizing the rational use of batteries.

Suggested Citation

  • Yang, Jie & Liu, Wei & Ma, Kai & Yue, Zhiyuan & Zhu, Anhu & Guo, Shiliang, 2023. "An optimal battery allocation model for battery swapping station of electric vehicles," Energy, Elsevier, vol. 272(C).
  • Handle: RePEc:eee:energy:v:272:y:2023:i:c:s0360544223005030
    DOI: 10.1016/j.energy.2023.127109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223005030
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Jun & Guo, Fang & Zhang, Min, 2017. "Optimal planning of swapping/charging station network with customer satisfaction," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 174-197.
    2. Amiri, Saeed Salimi & Jadid, Shahram & Saboori, Hedayat, 2018. "Multi-objective optimum charging management of electric vehicles through battery swapping stations," Energy, Elsevier, vol. 165(PB), pages 549-562.
    3. Liang, Yanni & Zhang, Xingping, 2018. "Battery swap pricing and charging strategy for electric taxis in China," Energy, Elsevier, vol. 147(C), pages 561-577.
    4. Tan, Yang & Fukuda, Hiroatsu & Li, Zhang & Wang, Shuai & Gao, Weijun & Liu, Zhonghui, 2022. "Does the public support the construction of battery swapping station for battery electric vehicles? - Data from Hangzhou, China," Energy Policy, Elsevier, vol. 163(C).
    5. Mahoor, Mohsen & Hosseini, Zohreh S. & Khodaei, Amin, 2019. "Least-cost operation of a battery swapping station with random customer requests," Energy, Elsevier, vol. 172(C), pages 913-921.
    6. Wang, Ning & Tang, Linhao & Zhang, Wenjian & Guo, Jiahui, 2019. "How to face the challenges caused by the abolishment of subsidies for electric vehicles in China?," Energy, Elsevier, vol. 166(C), pages 359-372.
    7. Yang, Shengjie & Yao, Jiangang & Kang, Tong & Zhu, Xiangqian, 2014. "Dynamic operation model of the battery swapping station for EV (electric vehicle) in electricity market," Energy, Elsevier, vol. 65(C), pages 544-549.
    8. Wang, Zhaoqi & Zhang, Lu & Tang, Wei & Chen, Ying & Shen, Chen, 2022. "Equilibrium allocation strategy of multiple ESSs considering the economics and restoration capability in DNs," Applied Energy, Elsevier, vol. 306(PA).
    9. Zhan, Weipeng & Wang, Zhenpo & Zhang, Lei & Liu, Peng & Cui, Dingsong & Dorrell, David G., 2022. "A review of siting, sizing, optimal scheduling, and cost-benefit analysis for battery swapping stations," Energy, Elsevier, vol. 258(C).
    10. Du, Jiuyu & Ouyang, Danhua, 2017. "Progress of Chinese electric vehicles industrialization in 2015: A review," Applied Energy, Elsevier, vol. 188(C), pages 529-546.
    11. Dreyfuss, Michael & Giat, Yahel, 2019. "Allocating spares to maximize the window fill rate in a periodic review inventory system," International Journal of Production Economics, Elsevier, vol. 214(C), pages 151-162.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xinjiang & Yang, Yu & Wang, Jianxiao & Song, Jie & He, Guannan, 2023. "Battery valuation and management for battery swapping station," Energy, Elsevier, vol. 279(C).
    2. Yahel Giat, 2024. "Stock Levels and Repair Sourcing in a Periodic Review Exchangeable Item Repair System," Logistics, MDPI, vol. 8(2), pages 1-19, March.
    3. Waleed Khalid Mahmood Al-Zaidi & Aslan Inan, 2023. "Optimal Placement of Battery Swapping Stations for Power Quality Improvement: A Novel Multi Techno-Economic Objective Function Approach," Energies, MDPI, vol. 17(1), pages 1-35, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yang & Lai, Kexing & Chen, Fengyun & Li, Zhengming & Hu, Chunhua, 2019. "Shadow price based co-ordination methods of microgrids and battery swapping stations," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Cui, Dingsong & Wang, Zhenpo & Liu, Peng & Wang, Shuo & Dorrell, David G. & Li, Xiaohui & Zhan, Weipeng, 2023. "Operation optimization approaches of electric vehicle battery swapping and charging station: A literature review," Energy, Elsevier, vol. 263(PE).
    3. Zhang, Mingze & Li, Weidong & Yu, Samson Shenglong & Wen, Kerui & Zhou, Chen & Shi, Peng, 2021. "A unified configurational optimization framework for battery swapping and charging stations considering electric vehicle uncertainty," Energy, Elsevier, vol. 218(C).
    4. Hu, Xu & Yang, Zhaojun & Sun, Jun & Zhang, Yali, 2023. "Optimal pricing strategy for electric vehicle battery swapping: Pay-per-swap or subscription?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    5. Liang, Yanni & Cai, Hua & Zou, Guilin, 2021. "Configuration and system operation for battery swapping stations in Beijing," Energy, Elsevier, vol. 214(C).
    6. Guohao Li & Tao Wang, 2022. "Long-Term Leases vs. One-Off Purchases: Game Analysis on Battery Swapping Mode Considering Cascade Utilization and Power Structure," Sustainability, MDPI, vol. 14(24), pages 1-28, December.
    7. Mahoor, Mohsen & Hosseini, Zohreh S. & Khodaei, Amin, 2019. "Least-cost operation of a battery swapping station with random customer requests," Energy, Elsevier, vol. 172(C), pages 913-921.
    8. Zhang, Shuo & Li, Xinxin & Li, Yingzi & Zheng, Yidan & Liu, Jie, 2023. "A green-fitting dispatching model of station cluster for battery swapping under charging-discharging mode," Energy, Elsevier, vol. 276(C).
    9. Kaifu Yuan & Chao Li & Guangqiang Wu, 2023. "Study on Vehicle Supply Chain Operation Mode Selection Based on Battery Leasing and Battery Swapping Services," Mathematics, MDPI, vol. 11(14), pages 1-21, July.
    10. Yan, Jie & Menghwar, Mohan & Asghar, Ehtisham & Kumar Panjwani, Manoj & Liu, Yongqian, 2019. "Real-time energy management for a smart-community microgrid with battery swapping and renewables," Applied Energy, Elsevier, vol. 238(C), pages 180-194.
    11. Xuewen Geng & Fengbin An & Chengmin Wang & Xi He, 2023. "Battery Swapping Station Pricing Optimization Considering Market Clearing and Electric Vehicles’ Driving Demand," Energies, MDPI, vol. 16(8), pages 1-14, April.
    12. Ruyu Xie & Liren An & Nosheena Yasir, 2022. "How Innovative Characteristics Influence Consumers’ Intention to Purchase Electric Vehicle: A Moderating Role of Lifestyle," Sustainability, MDPI, vol. 14(8), pages 1-24, April.
    13. Zhong, Xiaoqing & Zhong, Weifeng & Liu, Yi & Yang, Chao & Xie, Shengli, 2022. "Cooperative operation of battery swapping stations and charging stations with electricity and carbon trading," Energy, Elsevier, vol. 254(PA).
    14. Amiri, Saeed Salimi & Jadid, Shahram & Saboori, Hedayat, 2018. "Multi-objective optimum charging management of electric vehicles through battery swapping stations," Energy, Elsevier, vol. 165(PB), pages 549-562.
    15. Yongzhong Wu & Siyi Zhuge & Guoxin Han & Wei Xie, 2022. "Economics of Battery Swapping for Electric Vehicles—Simulation-Based Analysis," Energies, MDPI, vol. 15(5), pages 1-18, February.
    16. Zhu, Lijing & Wang, Peize & Zhang, Qi, 2019. "Indirect network effects in China’s electric vehicle diffusion under phasing out subsidies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    17. Huibing Cheng & Shanshui Zheng, 2022. "Incentive Compensation Mechanism for the Infrastructure Construction of Electric Vehicle Battery Swapping Station under Asymmetric Information," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    18. Sulabh Sachan & Sanchari Deb & Praveen Prakash Singh & Mohammad Saad Alam & Samir M. Shariff, 2022. "A comprehensive review of standards and best practices for utility grid integration with electric vehicle charging stations," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(3), May.
    19. Xiaoli Sun & Zhengguo Li & Xiaolin Wang & Chengjiang Li, 2019. "Technology Development of Electric Vehicles: A Review," Energies, MDPI, vol. 13(1), pages 1-29, December.
    20. Zhan, Weipeng & Wang, Zhenpo & Zhang, Lei & Liu, Peng & Cui, Dingsong & Dorrell, David G., 2022. "A review of siting, sizing, optimal scheduling, and cost-benefit analysis for battery swapping stations," Energy, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:272:y:2023:i:c:s0360544223005030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.